ترغب بنشر مسار تعليمي؟ اضغط هنا

Precoding for Satellite Communications: Why, How and What next?

82   0   0.0 ( 0 )
 نشر من قبل Eva Lagunas Dr.
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Precoding has stood out as a promising multi-user transmission technique to meet the emerging throughput demand of satellite communication systems while awaiting the technological maturity for exploiting higher bands. Precoding enables the reduction of interference among co-channel beams through spatial processing while promoting aggressive frequency reuse and improving spectral efficiency. Satellite systems offer multitude of system and service configurations, resulting in different precoder design methodologies. This article explores the motivation for the introduction of precoding, offers an insight to their theoretical development in a diverse scenarios and presents some avenues for future development.



قيم البحث

اقرأ أيضاً

Non-orthogonal multiple access (NOMA) schemes are being considered in 5G new radio developments and beyond. Although seminal papers demonstrated that NOMA outperforms orthogonal access in terms of capacity and user fairness, the majority of works hav e been devoted to the wireless terrestrial arena. Therefore, it is worth to study how NOMA can be implemented in other types of communications, as for instance the satellite ones, which are also part of the 5G infrastructure. Although communications through a satellite present a different architecture than those in the wireless terrestrial links, NOMA can be an important asset to improve their performance. This article introduces a general overview of how NOMA can be applied to this different architecture. A novel taxonomy is presented based on different multibeam transmission schemes and guidelines that open new avenues for research in this topic are provided.
Spectrum monitoring and interference detection are crucial for the satellite service performance and the revenue of SatCom operators. Interference is one of the major causes of service degradation and deficient operational efficiency. Moreover, the s atellite spectrum is becoming more crowded, as more satellites are being launched for different applications. This increases the risk of interference, which causes anomalies in the received signal, and mandates the adoption of techniques that can enable the automatic and real-time detection of such anomalies as a first step towards interference mitigation and suppression. In this paper, we present a Machine Learning (ML)-based approach able to guarantee a real-time and automatic detection of both short-term and long-term interference in the spectrum of the received signal at the base station. The proposed approach can localize the interference both in time and in frequency and is universally applicable across a discrete set of different signal spectra. We present experimental results obtained by applying our method to real spectrum data from the Swedish Space Corporation. We also compare our ML-based approach to a model-based approach applied to the same spectrum data and used as a realistic baseline. Experimental results show that our method is a more reliable interference detector.
Ultra-reliable low-latency Vehicle-to-Everything (V2X) communications are needed to meet the extreme requirements of enhanced driving applications. Millimeter-Wave (24.25-52.6 GHz) or sub-THz (>100 GHz) V2X communications are a viable solution, provi ded that the highly collimated beams are kept aligned during vehicles maneuverings. In this work, we propose a sensor-assisted dynamic Beamwidth and Power Control (BPC) system to counteract the detrimental effect of vehicle dynamics, exploiting data collected by on-board inertial and positioning sensors, mutually exchanged among vehicles over a parallel low-rate link, e.g., 5G New Radio (NR) Frequency Range 1 (FR1). The proposed BPC solution works on top of a sensor-aided Beam Alignment and Tracking (BAT) system, overcoming the limitations of fixed-beamwidth systems and optimizing the performance in challenging Vehicle-to-Vehicle (V2V) scenarios, even if extensions to Vehicle-to-Infrastructure (V2I) use-cases are feasible. We validate the sensor-assisted dynamic BPC on real trajectories and sensors data collected by a dedicated experimental campaign. The goal is to show the advantages of the proposed BPC strategy in a high data-rate Line-Of-Sight (LOS) V2V context, and to outline the requirements in terms of sensors sampling time and accuracy, along with the end-to-end latency on the control channel.
The rapid development of communication technologies in the past decades has provided immense vertical opportunities for individuals and enterprises. However, conventional terrestrial cellular networks have unfortunately neglected the huge geographica l digital divide, since high bandwidth wireless coverage is concentrated to urban areas. To meet the goal of ``connecting the unconnected, integrating low Earth orbit (LEO) satellites with the terrestrial cellular networks has been widely considered as a promising solution. In this article, we first introduce the development roadmap of LEO satellite constellations (SatCons), including early attempts in LEO satellites with the emerging LEO constellations. Further, we discuss the unique opportunities of employing LEO SatCons for the delivery of integrating 5G networks. Specifically, we present their key performance indicators, which offer important guidelines for the design of associated enabling techniques, and then discuss the potential impact of integrating LEO SatCons with typical 5G use cases, where we engrave our vision of various vertical domains reshaped by LEO SatCons. Technical challenges are finally provided to specify future research directions.
Satellite communications have recently entered a period of renewed interest motivated by technological advances and nurtured through private investment and ventures. The present survey aims at capturing the state of the art in SatComs, while highligh ting the most promising open research topics. Firstly, the main innovation drivers are motivated, such as new constellation types, on-board processing capabilities, nonterrestrial networks and space-based data collection/processing. Secondly, the most promising applications are described i.e. 5G integration, space communications, Earth observation, aeronautical and maritime tracking and communication. Subsequently, an in-depth literature review is provided across five axes: i) system aspects, ii) air interface, iii) medium access, iv) networking, v) testbeds & prototyping. Finally, a number of future challenges and the respective open research topics are described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا