ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating Clumpy Galaxies in the Sloan Digital Sky Survey Stripe 82 using the Galaxy Zoo

73   0   0.0 ( 0 )
 نشر من قبل Vihang Mehta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Giant, star-forming clumps are a common feature prevalent amongst high-redshift star-forming galaxies and play a critical role in shaping their chaotic morphologies and yet, their nature and role in galaxy evolution remains to be fully understood. A majority of the effort to study clumps has been focused at high redshifts, and local clump studies have often suffered from small sample sizes. In this work, we present an analysis of clump properties in the local universe, and for the first time, performed with a statistically significant sample. With the help of the citizen science-powered Galaxy Zoo: Hubble project, we select a sample of 92 $z<0.06$ clumpy galaxies in Sloan Digital Sky Survey Stripe 82 galaxies. Within this sample, we identify 543 clumps using a contrast-based image analysis algorithm and perform photometry as well as estimate their stellar population properties. The overall properties of our $z<0.06$ clump sample are comparable to the high-redshift clumps. However, contrary to the high-redshift studies, we find no evidence of a gradient in clump ages or masses as a function of their galactocentric distances. Our results challenge the inward migration scenario for clump evolution for the local universe, potentially suggesting a larger contribution of ex-situ clumps and/or longer clump migration timescales.



قيم البحث

اقرأ أيضاً

324 - James E. Geach 2011
We present a catalogue of 4098 photometrically selected galaxy clusters with a median redshift <z> = 0.32 in the 270 square degree Stripe 82 region of the Sloan Digital Sky Survey (SDSS), covering the celestial equator in the Southern Galactic Cap (- 50 < RA < 59 deg, |Dec| < 1.25 deg). Owing to the multi-epoch SDSS coverage of this region, the ugriz photometry is ~2 magnitudes deeper than single scans within the main SDSS footprint. We exploit this to detect clusters of galaxies using an algorithm that searches for statistically significant overdensities of galaxies in a Voronoi tessellation of the projected sky. 32% of the clusters have at least one member with a spectroscopic redshift from existing public data (SDSS Data Release 7, 2SLAQ & WiggleZ), and the remainder have a robust photometric redshift (accurate to ~5-9% at the median redshift of the sample). The weighted average of the member galaxies redshifts provides a reasonably accurate estimate of the cluster redshift. The cluster catalogue is publicly available for exploitation by the community to pursue a range of science objectives. In addition to the cluster catalogue, we provide a linked catalogue of 18,295 V<21 mag quasar sight-lines with impact parameters within <3 Mpc of the cluster cores selected from the catalogue of Veron et al. (2010). The background quasars cover 0.25 < z < 2, where MgII absorption-line systems associated with the clusters are detectable in optical spectra.
171 - Kyle W. Willett 2013
We present the data release for Galaxy Zoo 2 (GZ2), a citizen science project with more than 16 million morphological classifications of 304,122 galaxies drawn from the Sloan Digital Sky Survey. Morphology is a powerful probe for quantifying a galaxy s dynamical history; however, automatic classifications of morphology (either by computer analysis of images or by using other physical parameters as proxies) still have drawbacks when compared to visual inspection. The large number of images available in current surveys makes visual inspection of each galaxy impractical for individual astronomers. GZ2 uses classifications from volunteer citizen scientists to measure morphologies for all galaxies in the DR7 Legacy survey with m_r>17, in addition to deeper images from SDSS Stripe 82. While the original Galaxy Zoo project identified galaxies as early-types, late-types, or mergers, GZ2 measures finer morphological features. These include bars, bulges, and the shapes of edge-on disks, as well as quantifying the relative strengths of galactic bulges and spiral arms. This paper presents the full public data release for the project, including measures of accuracy and bias. The majority (>90%) of GZ2 classifications agree with those made by professional astronomers, especially for morphological T-types, strong bars, and arm curvature. Both the raw and reduced data products can be obtained in electronic format at http://data.galaxyzoo.org .
The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to probe the accelerated expansion of the Universe. The current surveys covering a comoving volume sufficient to unveil the BAO scale are limite d to redshift $z lesssim 0.7$. In this paper, we study several galaxy selection schemes aiming at building an emission-line-galaxy (ELG) sample in the redshift range $0.6<z<1.7$, that would be suitable for future BAO studies using the Baryonic Oscillation Spectroscopic Survey (BOSS) spectrograph on the Sloan Digital Sky Survey (SDSS) telescope. We explore two different colour selections using both the SDSS and the Canada France Hawai Telescope Legacy Survey (CFHT-LS) photometry in the u, g, r, and i bands and evaluate their performance selecting luminous ELG. From about 2,000 ELG, we identified a selection scheme that has a 75 percent redshift measurement efficiency. This result confirms the feasibility of massive ELG surveys using the BOSS spectrograph on the SDSS telescope for a BAO detection at redshift $zsim1$, in particular the proposed eBOSS experiment, which plans to use the SDSS telescope to combine the use of the BAO ruler with redshift space distortions using emission line galaxies and quasars in the redshift $0.6<z<2.2$.
We present an improved analysis of halo substructure traced by RR Lyrae stars in the SDSS stripe 82 region. With the addition of SDSS-II data, a revised selection method based on new ugriz light curve templates results in a sample of 483 RR Lyrae sta rs that is essentially free of contamination. The main result from our first study persists: the spatial distribution of halo stars at galactocentric distances 5--100 kpc is highly inhomogeneous. At least 20% of halo stars within 30 kpc from the Galactic center can be statistically associated with substructure. We present strong direct evidence, based on both RR Lyrae stars and main sequence stars, that the halo stellar number density profile significantly steepens beyond a Galactocentric distance of ~30 kpc, and a larger fraction of the stars are associated with substructure. By using a novel method that simultaneously combines data for RR Lyrae and main sequence stars, and using photometric metallicity estimates for main sequence stars derived from deep co-added u-band data, we measure the metallicity of the Sagittarius dSph tidal stream (trailing arm) towards R.A.2h-3h and Dec~0 deg to be 0.3 dex higher ([Fe/H]=-1.2) than that of surrounding halo field stars. Together with a similar result for another major halo substructure, the Monoceros stream, these results support theoretical predictions that an early forming, smooth inner halo, is metal poor compared to high surface brightness material that have been accreted onto a later-forming outer halo. The mean metallicity of stars in the outer halo that are not associated with detectable clumps may still be more metal-poor than the bulk of inner-halo stars, as has been argued from other data sets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا