ترغب بنشر مسار تعليمي؟ اضغط هنا

Power Allocation for Fingerprint-Based PHY-Layer Authentication with mmWave UAV Networks

73   0   0.0 ( 0 )
 نشر من قبل Sung Joon Maeng
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Physical layer security (PLS) techniques can help to protect wireless networks from eavesdropper attacks. In this paper, we consider the authentication technique that uses fingerprint embedding to defend 5G cellular networks with unmanned aerial vehicle (UAV) systems from eavesdroppers and intruders. Since the millimeter wave (mmWave) cellular networks use narrow and directional beams, PLS can take further advantage of the 3D spatial dimension for improving the authentication of UAV users. Considering a multi-user mmWave cellular network, we propose a power allocation technique that jointly takes into account splitting of the transmit power between the precoder and the authentication tag, which manages both the secrecy as well as the achievable rate. Our results show that we can obtain optimal achievable rate with expected secrecy.



قيم البحث

اقرأ أيضاً

The integration of unmanned aerial vehicles (UAVs) into the terrestrial cellular networks is envisioned as one key technology for next-generation wireless communications. In this work, we consider the physical layer security of the communications lin ks in the millimeter-wave (mmWave) spectrum which are maintained by UAVs functioning as base stations (BS). In particular, we propose a new precoding strategy which incorporates the channel state information (CSI) of the eavesdropper (Eve) compromising link security. We show that our proposed precoder strategy eliminates any need for artificial noise (AN) transmission in underloaded scenarios (fewer users than number of antennas). In addition, we demonstrate that our nonlinear precoding scheme provides promising secrecy-rate performance even for overloaded scenarios at the expense of transmitting low-power AN.
Unmanned aerial vehicles (UAVs) are capable of serving as aerial base stations (BSs) for providing both cost-effective and on-demand wireless communications. This article investigates dynamic resource allocation of multiple UAVs enabled communication networks with the goal of maximizing long-term rewards. More particularly, each UAV communicates with a ground user by automatically selecting its communicating users, power levels and subchannels without any information exchange among UAVs. To model the uncertainty of environments, we formulate the long-term resource allocation problem as a stochastic game for maximizing the expected rewards, where each UAV becomes a learning agent and each resource allocation solution corresponds to an action taken by the UAVs. Afterwards, we develop a multi-agent reinforcement learning (MARL) framework that each agent discovers its best strategy according to its local observations using learning. More specifically, we propose an agent-independent method, for which all agents conduct a decision algorithm independently but share a common structure based on Q-learning. Finally, simulation results reveal that: 1) appropriate parameters for exploitation and exploration are capable of enhancing the performance of the proposed MARL based resource allocation algorithm; 2) the proposed MARL algorithm provides acceptable performance compared to the case with complete information exchanges among UAVs. By doing so, it strikes a good tradeoff between performance gains and information exchange overheads.
Unmanned aerial vehicle (UAV) swarm has emerged as a promising novel paradigm to achieve better coverage and higher capacity for future wireless network by exploiting the more favorable line-of-sight (LoS) propagation. To reap the potential gains of UAV swarm, the remote control signal sent by ground control unit (GCU) is essential, whereas the control signal quality are susceptible in practice due to the effect of the adjacent channel interference (ACI) and the external interference (EI) from radiation sources distributed across the region. To tackle these challenges, this paper considers priority-aware resource coordination in a multi-UAV communication system, where multiple UAVs are controlled by a GCU to perform certain tasks with a pre-defined trajectory. Specifically, we maximize the minimum signal-to-interference-plus-noise ratio (SINR) among all the UAVs by jointly optimizing channel assignment and power allocation strategy under stringent resource availability constraints. According to the intensity of ACI, we consider the corresponding problem in two scenarios, i.e., Null-ACI and ACI systems. By virtue of the particular problem structure in Null-ACI case, we first recast the formulation into an equivalent yet more tractable form and obtain the global optimal solution via Hungarian algorithm. For general ACI systems, we develop an efficient iterative algorithm for its solution based on the smooth approximation and alternating optimization methods. Extensive simulation results demonstrate that the proposed algorithms can significantly enhance the minimum SINR among all the UAVs and adapt the allocation of communication resources to diverse mission priority.
An unmanned aerial vehicle (UAV)-aided secure communication system is conceived and investigated, where the UAV transmits legitimate information to a ground user in the presence of an eavesdropper (Eve). To guarantee the security, the UAV employs a p ower splitting approach, where its transmit power can be divided into two parts for transmitting confidential messages and artificial noise (AN), respectively. We aim to maximize the average secrecy rate by jointly optimizing the UAVs trajectory, the transmit power levels and the corresponding power splitting ratios allocated to different time slots during the whole flight time, subject to both the maximum UAV speed constraint, the total mobility energy constraint, the total transmit power constraint, and other related constraints. To efficiently tackle this non-convex optimization problem, we propose an iterative algorithm by blending the benefits of the block coordinate descent (BCD) method, the concave-convex procedure (CCCP) and the alternating direction method of multipliers (ADMM). Specially, we show that the proposed algorithm exhibits very low computational complexity and each of its updating steps can be formulated in a nearly closed form. Our simulation results validate the efficiency of the proposed algorithm.
Supporting reliable and seamless wireless connectivity for unmanned aerial vehicles (UAVs) has recently become a critical requirement to enable various different use cases of UAVs. Due to their widespread deployment footprint, cellular networks can s upport beyond visual line of sight (BVLOS) communications for UAVs. In this paper, we consider cellular connected UAVs (C-UAVs) that are served by massive multiple-input-multiple-output (MIMO) links to extend coverage range, while also improving physical layer security and authentication. We consider Rician channel and propose a novel linear precoder design for transmitting data and artificial noise (AN). We derive the closed-form expression of the ergodic secrecy rate of C-UAVs for both conventional and proposed precoder designs. In addition, we obtain the optimal power splitting factor that divides the power between data and AN by asymptotic analysis. Then, we apply the proposed precoder design in the fingerprint embedding authentication framework, where the goal is to minimize the probability of detection of the authentication tag at an eavesdropper. In simulation results, we show the superiority of the proposed precoder in both secrecy rate and the authentication probability considering moderate and large number of antenna massive MIMO scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا