ﻻ يوجد ملخص باللغة العربية
Physical layer security (PLS) techniques can help to protect wireless networks from eavesdropper attacks. In this paper, we consider the authentication technique that uses fingerprint embedding to defend 5G cellular networks with unmanned aerial vehicle (UAV) systems from eavesdroppers and intruders. Since the millimeter wave (mmWave) cellular networks use narrow and directional beams, PLS can take further advantage of the 3D spatial dimension for improving the authentication of UAV users. Considering a multi-user mmWave cellular network, we propose a power allocation technique that jointly takes into account splitting of the transmit power between the precoder and the authentication tag, which manages both the secrecy as well as the achievable rate. Our results show that we can obtain optimal achievable rate with expected secrecy.
The integration of unmanned aerial vehicles (UAVs) into the terrestrial cellular networks is envisioned as one key technology for next-generation wireless communications. In this work, we consider the physical layer security of the communications lin
Unmanned aerial vehicles (UAVs) are capable of serving as aerial base stations (BSs) for providing both cost-effective and on-demand wireless communications. This article investigates dynamic resource allocation of multiple UAVs enabled communication
Unmanned aerial vehicle (UAV) swarm has emerged as a promising novel paradigm to achieve better coverage and higher capacity for future wireless network by exploiting the more favorable line-of-sight (LoS) propagation. To reap the potential gains of
An unmanned aerial vehicle (UAV)-aided secure communication system is conceived and investigated, where the UAV transmits legitimate information to a ground user in the presence of an eavesdropper (Eve). To guarantee the security, the UAV employs a p
Supporting reliable and seamless wireless connectivity for unmanned aerial vehicles (UAVs) has recently become a critical requirement to enable various different use cases of UAVs. Due to their widespread deployment footprint, cellular networks can s