ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Universal Lindblad equation for open quantum systems

111   0   0.0 ( 0 )
 نشر من قبل Joonhyun Yeo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this Comment, we show that the thermal Gibbs state given in terms of a time-independent system Hamiltonian is not a steady state solution of the quantum master equation introduced by Nathan and Rudner [Phys. Rev. B 102, 115109 (2020)], in contrast to their claim.


قيم البحث

اقرأ أيضاً

The work reported in arXiv:1311.5619v1 proposes to produce continuous-variable cluster states through relativistic motion of cavities. This proposal does not produce the states claimed by the authors. The states actually produced are in general not k nown to be useful for measurement-based quantum computation.
We consider an open quantum system described by a Lindblad-type master equation with two times-scales. The fast time-scale is strongly dissipative and drives the system towards a low-dimensional decoherence-free space. To perform the adiabatic elimin ation of this fast relaxation, we propose a geometric asymptotic expansion based on the small positive parameter describing the time-scale separation. This expansion exploits geometric singular perturbation theory and center-manifold techniques. We conjecture that, at any order, it provides an effective slow Lindblad master equation and a completely positive parameterization of the slow invariant sub-manifold associated to the low-dimensional decoherence-free space. By preserving complete positivity and trace, two important structural properties attached to open quantum dynamics, we obtain a reduced-order model that directly conveys a physical interpretation since it relies on effective Lindbladian descriptions of the slow evolution. At the first order, we derive simple formulae for the effective Lindblad master equation. For a specific type of fast dissipation, we show how any Hamiltonian perturbation yields Lindbladian second-order corrections to the first-order slow evolution governed by the Zeno-Hamiltonian. These results are illustrated on a composite system made of a strongly dissipative harmonic oscillator, the ancilla, weakly coupled to another quantum system.
We present a general quantum fluctuation theorem for the entropy production of an open quantum system whose evolution is described by a Lindblad master equation. Such theorem holds for both local and global master equations, thus settling the dispute on the thermodynamic consistency of the local quantum master equations. The theorem is genuinely quantum, as it can be expressed in terms of conservation of an Hermitian operator, describing the dynamics of the system state operator and of the entropy change in the baths. The integral fluctuation theorem follows from the properties of such an operator. Furthermore, it is valid for arbitrary number of baths and for time-dependent Hamiltonians. As such, the quantum Jarzynski equality is a particular case of the general result presented here. Moreover, our result can be extended to non-thermal baths, as long as microreversibility is preserved. We finally present some numerical examples to showcase the exact results previously obtained.
Realistic models of quantum systems must include dissipative interactions with an environment. For weakly-damped systems the Lindblad-form Markovian master equation is invaluable for this task due to its tractability and efficiency. This equation onl y applies, however, when the frequencies of any subset of the systems transitions are either equal (degenerate), or their differences are much greater than the transitions linewidths (far-detuned). Outside of these two regimes the only available efficient description has been the Bloch-Redfield (B-R) master equation, the efficacy of which has long been controversial due to its failure to guarantee the positivity of the density matrix. The ability to efficiently simulate weakly-damped systems across all regimes is becoming increasingly important, especially in the area of quantum technologies. Here we solve this long-standing problem. We discover that a condition on the slope of the spectral density is sufficient to derive a Lindblad form master equation that is accurate for all regimes. We further show that this condition is necessary for weakly-damped systems to be described by the B-R equation or indeed any Markovian master equation. We thus obtain a replacement for the B-R equation over its entire domain of applicability that is no less accurate, simpler in structure, completely positive, allows simulation by efficient quantum trajectory methods, and unifies the previous Lindblad master equations. We also show via exact simulations that the new master equation can describe systems in which slowly-varying transition frequencies cross each other during the evolution. System identification tools, developed in systems engineering, play an important role in our analysis. We expect these tools to prove useful in other areas of physics involving complex systems.
Perturbation theory (PT) is a powerful and commonly used tool in the investigation of closed quantum systems. In the context of open quantum systems, PT based on the Markovian quantum master equation is much less developed. The investigation of open systems mostly relies on exact diagonalization of the Liouville superoperator or quantum trajectories. In this approach, the system size is rather limited by current computational capabilities. Analogous to closed-system PT, we develop a PT suitable for open quantum systems. This proposed method is useful in the analytical understanding of open systems as well as in the numerical calculation of system properties, which would otherwise be impractical.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا