ﻻ يوجد ملخص باللغة العربية
How does the low surface brightness galaxies (LSBGs) form stars and assemble the stellar mass is one of the most important questions to understand the LSBG population. We select a sample of 381 HI bright LSBGs with both Far Ultraviolet (FUV) and Near Infrared (NIR) observation to investigate the star formation rate (SFR) and stellar mass scales, and the growth mode. We measure the UV and NIR radius of our sample, which represent the star-forming and stellar mass distribution scales. We also compare the UV and H band radius-stellar mass relation with the archive data, to identify the SFR and stellar mass structure difference between the LSBG population and other galaxies. Since galaxy HI mass has a tight correlation with the HI radius, we can also compare the HI and UV radii to understand the distribution of the HI gas and star formation activities. Our results show that most of the HI selected LSBGs have extended star formation structure. The stellar mass distribution of LSBGs may have a similar structure as the disk galaxies at the same stellar mass bins, while the star-forming activity of LSBGs happens at a larger radius than the high surface density galaxies, which may help to select the LSBG sample from the wide-field deep u band image survey. The HI also distributed at a larger radius, implying a steeper (or no) Kennicutt-Schmidt relation for LSBGs.
Most of the massive star-forming galaxies are found to have `inside-out stellar mass growth modes, which means the inner parts of the galaxies mainly consist of the older stellar population, while the star forming in the outskirt of the galaxy is sti
We present HI observations of four giant low surface brightness (GLSB) galaxies UGC 1378, UGC 1922, UGC 4422 and UM 163 using the Giant Meterwave Radio Telescope (GMRT). We include HI results on UGC 2936, UGC 6614 and Malin 2 from literature. HI is d
We present Very Large Array ({sc vla}) and Westerbork Synthesis Radio Telescope ({sc wsrt}) 21-cm H{sc i} observations of 19 late-type low surface brightness (LSB) galaxies. Our main findings are that these galaxies, as well as having low surface bri
We present a study of the HI and optical properties of nearby ($z$ $le$ 0.1) Low Surface Brightness galaxies (LSBGs). We started with a literature sample of $sim$900 LSBGs and divided them into three morphological classes: spirals, irregulars and dwa
Our statistical understanding of galaxy evolution is fundamentally driven by objects that lie above the surface-brightness limits of current wide-area surveys (mu ~ 23 mag arcsec^-2). While both theory and small, deep surveys have hinted at a rich po