ﻻ يوجد ملخص باللغة العربية
Exploring the mechanism of interfacial thermal transport and reducing the interfacial thermal resistance is of great importance for thermal management and modulation. Herein, the interfacial thermal resistance between overlapped graphene nanoribbons is largely reduced by adding bonded carbon chains by performing molecular dynamics simulations. And the analytical model (cross-interface model, CIM) is utilized to analyze and explain the two-dimensional thermal transport mechanism at cross-interface. An order of magnitude reduction in interfacial thermal resistance is found as the graphene nanoribbons are bonded by just one carbon chain. Interestingly, the decreasing rate of interfacial thermal resistance slows down gradually with the increasing of the number of carbon chains, which can be explained by the proposed theoretical relationship based on CIM. Moreover, by the comparison of CIM and traditional simplified model, the accuracy of CIM is verified and demonstrated in overlapped graphene nanoribbons. This work provides a new way to improve the interfacial thermal transport and reveal the essential mechanism for low-dimensional materials applied in thermal management.
We proposed a new way, adding intertube atoms, to enhance interfacial thermal conductance (ITC) between SiC-carbon nanotube (CNT) array structure. Non-equilibrium molecular dynamics method was used to study the ITC. The results show that the intertub
We present an atomic-resolution observation and analysis of graphene constrictions and ribbons with sub-nanometer width. Graphene membranes are studied by imaging side spherical aberration-corrected transmission electron microscopy at 80 kV. Holes ar
Establishment of a new technique or extension of an existing technique for thermal and thermoelectric measurements to a more challenging system is an important task to explore the thermal and thermoelectric properties of various materials and systems
We report large-yield production of graphene flakes on glass by anodic bonding. Under optimum conditions, we counted several tens of flakes with lateral size around 20-30 {mu}m and few tens of flakes with larger size. 60-70% of the flakes have neglig
Capillary and van der Waals forces cause nanotubes to deform or even collapse under metal contacts. Using ab-initio bandstructure calculations, we find that these deformations reduce the bandgap by as much as 30%, while fully collapsed nanotubes beco