ﻻ يوجد ملخص باللغة العربية
The feature extraction methods of radiomics are mainly based on static tomographic images at a certain moment, while the occurrence and development of disease is a dynamic process that cannot be fully reflected by only static characteristics. This study proposes a new dynamic radiomics feature extraction workflow that uses time-dependent tomographic images of the same patient, focuses on the changes in image features over time, and then quantifies them as new dynamic features for diagnostic or prognostic evaluation. We first define the mathematical paradigm of dynamic radiomics and introduce three specific methods that can describe the transformation process of features over time. Three different clinical problems are used to validate the performance of the proposed dynamic feature with conventional 2D and 3D static features.
Automatic colorectal polyp detection in colonoscopy video is a fundamental task, which has received a lot of attention. Manually annotating polyp region in a large scale video dataset is time-consuming and expensive, which limits the development of d
A novel method, utilizing convolutional neural networks (CNNs), is proposed to reconstruct hyperspectral cubes from computed tomography imaging spectrometer (CTIS) images. Current reconstruction algorithms are usually subject to long reconstruction t
The need for tomographic reconstruction from sparse measurements arises when the measurement process is potentially harmful, needs to be rapid, or is uneconomical. In such cases, information from previous longitudinal scans of the same object helps t
Nowadays modern displays are capable to render video content with high dynamic range (HDR) and wide color gamut (WCG). However, most available resources are still in standard dynamic range (SDR). Therefore, there is an urgent demand to transform existing SDR-TV contents into their HDR-
Hyperspectral imaging enables versatile applications due to its competence in capturing abundant spatial and spectral information, which are crucial for identifying substances. However, the devices for acquiring hyperspectral images are expensive and