ترغب بنشر مسار تعليمي؟ اضغط هنا

Floquet-Bloch Oscillations and Intraband Zener Tunneling in an Oblique Spacetime Crystal

75   0   0.0 ( 0 )
 نشر من قبل Qiang Gao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate an oblique spacetime crystal realized by a monoatomic crystal in which a mode of sound propagates. We provide a systematic analysis of the crystal and obtain the corresponding band structure, based on which the electron dynamics under an external electric field is studied. Several unique band topologies are revealed, which lead to novel Floquet-Bloch oscillations in the electrons motion. We also discover intraband Zener tunneling in the oblique spacetime crystal beyond the adiabatic limit, which effectively converts between the different band topologies. Our results indicate the possibility of a prototypical quantum acoustoelectric generator that converts energy between the sound wave and a DC electric field in quantized units.

قيم البحث

اقرأ أيضاً

We discuss the interband light tunneling in a two-dimensional periodic photonic structure, as was studied recently in experiments for optically-induced photonic lattices [H. Trompeter et al., Phys. Rev. Lett. textbf{96}, 053903 (2006)]. We identify t he Zener tunneling regime at the crossing of two Bloch bands, which occurs in a generic case of the Bragg reflection when the Bloch index crosses the edge of the irreducible Brillouin zone. Similarly, the higher-order Zener tunneling involves four Bloch bands when the Bloch index passes through a high-symmetry point on the edge of the Brillouin zone. We derive simple analytical models that describe the tunneling effect, and calculate the corresponding tunneling probabilities.
We report time-resolved measurements of Landau-Zener tunneling of Bose-Einstein condensates in accelerated optical lattices, clearly resolving the step-like time dependence of the band populations. Using different experimental protocols we were able to measure the tunneling probability both in the adiabatic and in the diabatic bases of the system. We also experimentally determine the contribution of the momentum width of the Bose condensates to the width of the tunneling steps and discuss the implications for measuring the jump time in the Landau-Zener problem.
Cold atoms in an optical lattice execute Bloch-Zener oscillations when they are accelerated. We have performed a theoretical investigation into the case when the optical lattice is the intra-cavity field of a driven Fabry-Perot resonator. When the at oms oscillate inside the resonator, we find that their back-action modulates the phase and intensity of the light transmitted through the cavity. We solve the coupled atom-light equations self-consistently and show that, remarkably, the Bloch period is unaffected by this back-action. The transmitted light provides a way to observe the oscillation continuously, allowing high precision measurements to be made with a small cloud of atoms.
We report on the control of interaction-induced dephasing of Bloch oscillations for an atomic Bose-Einstein condensate in an optical lattice under the influence of gravity. When tuning the strength of the interaction towards zero by means of a Feshba ch resonance, the dephasing time is increased from a few to more than twenty thousand Bloch oscillation periods. We quantify the dephasing in terms of the width of the quasi-momentum distribution and measure its dependence on time for different values of the scattering length. Minimizing the dephasing allows us to realize a BEC-based atom interferometer in the non-interacting limit. We use it for a precise determination of a zero-crossing for the atomic scattering length and to observe collapse and revivals of Bloch oscillations when the atomic sample is subject to a spatial force gradient.
We report Floquet band engineering of long-range transport and direct imaging of Floquet-Bloch bands in an amplitude-modulated optical lattice. In one variety of Floquet-Bloch band we observe tunable rapid long-range high-fidelity transport of a Bose condensate across thousands of lattice sites. Quenching into an opposite-parity Floquet-hybridized band allows Wannier-Stark localization to be controllably turned on and off using modulation. A central result of this work is the use of transport dynamics to demonstrate direct imaging of a Floquet-Bloch band structure. These results demonstrate that transport in dynamical Floquet-Bloch bands can be mapped to transport in quasi-static effective bands, opening a path to cold atom quantum emulation of ultrafast multi-band electronic dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا