ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Autoregressive Predictive Coding for Learning Speech Representations from Local Dependencies

136   0   0.0 ( 0 )
 نشر من قبل Alexander H. Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-supervised speech representations have been shown to be effective in a variety of speech applications. However, existing representation learning methods generally rely on the autoregressive model and/or observed global dependencies while generating the representation. In this work, we propose Non-Autoregressive Predictive Coding (NPC), a self-supervised method, to learn a speech representation in a non-autoregressive manner by relying only on local dependencies of speech. NPC has a conceptually simple objective and can be implemented easily with the introduced Masked Convolution Blocks. NPC offers a significant speedup for inference since it is parallelizable in time and has a fixed inference time for each time step regardless of the input sequence length. We discuss and verify the effectiveness of NPC by theoretically and empirically comparing it with other methods. We show that the NPC representation is comparable to other methods in speech experiments on phonetic and speaker classification while being more efficient.



قيم البحث

اقرأ أيضاً

In this work, we propose ParaNet, a non-autoregressive seq2seq model that converts text to spectrogram. It is fully convolutional and brings 46.7 times speed-up over the lightweight Deep Voice 3 at synthesis, while obtaining reasonably good speech qu ality. ParaNet also produces stable alignment between text and speech on the challenging test sentences by iteratively improving the attention in a layer-by-layer manner. Furthermore, we build the parallel text-to-speech system and test various parallel neural vocoders, which can synthesize speech from text through a single feed-forward pass. We also explore a novel VAE-based approach to train the inverse autoregressive flow (IAF) based parallel vocoder from scratch, which avoids the need for distillation from a separately trained WaveNet as previous work.
Non-autoregressive (NAR) transformer models have been studied intensively in automatic speech recognition (ASR), and a substantial part of NAR transformer models is to use the casual mask to limit token dependencies. However, the casual mask is desig ned for the left-to-right decoding process of the non-parallel autoregressive (AR) transformer, which is inappropriate for the parallel NAR transformer since it ignores the right-to-left contexts. Some models are proposed to utilize right-to-left contexts with an extra decoder, but these methods increase the model complexity. To tackle the above problems, we propose a new non-autoregressive transformer with a unified bidirectional decoder (NAT-UBD), which can simultaneously utilize left-to-right and right-to-left contexts. However, direct use of bidirectional contexts will cause information leakage, which means the decoder output can be affected by the character information from the input of the same position. To avoid information leakage, we propose a novel attention mask and modify vanilla queries, keys, and values matrices for NAT-UBD. Experimental results verify that NAT-UBD can achieve character error rates (CERs) of 5.0%/5.5% on the Aishell1 dev/test sets, outperforming all previous NAR transformer models. Moreover, NAT-UBD can run 49.8x faster than the AR transformer baseline when decoding in a single step.
We propose a new method for learning word representations using hierarchical regularization in sparse coding inspired by the linguistic study of word meanings. We show an efficient learning algorithm based on stochastic proximal methods that is signi ficantly faster than previous approaches, making it possible to perform hierarchical sparse coding on a corpus of billions of word tokens. Experiments on various benchmark tasks---word similarity ranking, analogies, sentence completion, and sentiment analysis---demonstrate that the method outperforms or is competitive with state-of-the-art methods. Our word representations are available at url{http://www.ark.cs.cmu.edu/dyogatam/wordvecs/}.
Unsupervised speech representation learning has shown remarkable success at finding representations that correlate with phonetic structures and improve downstream speech recognition performance. However, most research has been focused on evaluating t he representations in terms of their ability to improve the performance of speech recognition systems on read English (e.g. Wall Street Journal and LibriSpeech). This evaluation methodology overlooks two important desiderata that speech representations should have: robustness to domain shifts and transferability to other languages. In this paper we learn representations from up to 8000 hours of diverse and noisy speech data and evaluate the representations by looking at their robustness to domain shifts and their ability to improve recognition performance in many languages. We find that our representations confer significant robustness advantages to the resulting recognition systems: we see significant improvements in out-of-domain transfer relative to baseline feature sets and the features likewise provide improvements in 25 phonetically diverse languages including tonal languages and low-resource languages.
426 - Yu Bao , Hao Zhou , Jiangtao Feng 2019
Non-autoregressive models are promising on various text generation tasks. Previous work hardly considers to explicitly model the positions of generated words. However, position modeling is an essential problem in non-autoregressive text generation. I n this study, we propose PNAT, which incorporates positions as a latent variable into the text generative process. Experimental results show that PNAT achieves top results on machine translation and paraphrase generation tasks, outperforming several strong baselines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا