ﻻ يوجد ملخص باللغة العربية
The structure of $^{26}$O is currently being investigated on both theoretical and experimental fronts. It is well established that it is unbound and the resonance parameters are fairly well-known. The theoretical analysis may involved two- and three-body interactions, as well as correlations with the continuum spectrum of energy. In order to properly assess the structure of the ground and excited states, it is imperative to include a large single particle representation with the right asymptotic behavior. The purpose of this work is to provide details of the single particle continuum configurations of the ground and excited $0^+$ states. We use a large complex energy single particle basis, formed by resonances and complex energy scattering states, the so called Berggren basis, and a separable interaction, which is convenient to solve in a large model space. Three $0^+$ states were found in the complex energy plane. Changes of the resonant parameters, i.e. energy and width, were analyzed as a function of strength of the residual interaction. It is shown how a subtle difference in the interaction could change the unbound character of $^{26}$O into a Borromean nucleus. Only one of the two excited states can be considered as a candidate for a physical meaningful resonance. The calculated occupation probabilities are in agreement with other theoretical approaches although the calculated half live is three-order of magnitude smaller than the experimental one.
The eastern region of the calcium isotope chain of the nuclei chart is, nowadays, of great activity. The experimental assessment of the limit of stability is of interest to confirm or improve microscopic theoretical models. The goal of this work is t
We introduce the concept of neutron-proton two-particle units ($np$-Weisskopf units) to be used in the analysis of the ($^3$He,$p)$ and $(p,^3$He) added{reactions on nuclei} along the N=Z line. These are presented for the conditions relevant to the $
We present a new observable to study halo nuclei. This new observable is a particular ratio of angular distributions for elastic breakup and scattering. For one-neutron halo nuclei, it is shown to be independent of the reaction mechanism and to provi
The breakup cross section (BUX) of 22C by 12C at 250 MeV/nucleon is evaluated by the continuum-discretized coupled-channels method incorporating the cluster-orbital shell model (COSM) wave functions. Contributions of the low-lying 0+_2 and 2+_1 reson
We present a high-accuracy calculation of the deuteron structure radius in chiral effective field theory. Our analysis employs the state-of-the-art semilocal two-nucleon potentials and takes into account two-body contributions to the charge density o