ﻻ يوجد ملخص باللغة العربية
A typical strategy of realizing an adiabatic change of a many-particle system is to vary parameters very slowly on a time scale $t_text{r}$ much larger than intrinsic equilibration time scales. In the ideal case of adiabatic state preparation, $t_text{r} to infty$, the entropy production vanishes. In systems with conservation laws, the approach to the adiabatic limit is hampered by hydrodynamic long-time tails, arising from the algebraically slow relaxation of hydrodynamic fluctuations. We argue that the entropy production $Delta S$ of a diffusive system at finite temperature in one or two dimensions is governed by hydrodynamic modes resulting in $Delta S sim 1/sqrt{t_text{r}}$ in $d=1$ and $Delta S sim ln(t_text{r})/t_text{r}$ in $d=2$. In higher dimensions, entropy production is instead dominated by other high-energy modes with $Delta S sim 1/t_text{r}$. In order to verify the analytic prediction, we simulate the non-equilibrium dynamics of a classical two-component gas with point-like particles in one spatial dimension and examine the total entropy production as a function of $t_text{r}$.
We consider the out-of-equilibrium dynamics of an interacting integrable system in the presence of an external dephasing noise. In the limit of large spatial correlation of the noise, we develop an exact description of the dynamics of the system base
We review recent progress in understanding nearly integrable models within the framework of generalized hydrodynamics (GHD). Integrable systems have infinitely many conserved quantities and stable quasiparticle excitations: when integrability is brok
We derive a large-scale hydrodynamic equation, including diffusive and dissipative effects, for systems with generic static position-dependent driving forces coupling to local conserved quantities. We show that this equation predicts entropy increase
The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this letter, we show that it supersedes the w
Motivated by experiments on splitting one-dimensional quasi-condensates, we study the statistics of the work done by a quantum quench in a bosonic system. We discuss the general features of the probability distribution of the work and focus on its be