ﻻ يوجد ملخص باللغة العربية
We have searched for proton decay via $pto e^+pi^0$ and $pto mu^+pi^0$ modes with the enlarged fiducial volume data of Super-Kamiokande from April 1996 to May 2018, which corresponds to 450 kton$cdot$years exposure. We have accumulated about 25% more livetime and enlarged the fiducial volume of the Super-Kamiokande detector from 22.5 kton to 27.2 kton for this analysis, so that 144 kton$cdot$years of data, including 78 kton$cdot$years of additional fiducial volume data, has been newly analyzed. No candidates have been found for $pto e^+pi^0$ and one candidate remains for $pto mu^+pi^0$ in the conventional 22.5 kton fiducial volume and it is consistent with the atmospheric neutrino background prediction. We set lower limits on the partial lifetime for each of these modes: $tau/B(pto e^+pi^0) > 2.4 times 10^{34}$ years and $tau/B(pto mu^+pi^0) > 1.6 times 10^{34}$ years at 90% confidence level.
The s-channel annihilation of proton and antiproton into a neutral pion and a real or virtual photon followed by lepton pair emission is studied. Such mechanism is expected to play a role at moderate values of the total energy $sqrt{s}$, when the pio
We present the results of searches for nucleon decay via bound neutron to antineutrino plus pizero and proton to antineutrino plus piplus using data from a combined 172.8 kiloton-years exposure of Super-Kamiokande-I, -II, and -III. We set lower limit
Based on a sample of 1.31 billion $J/psi$ events collected with the BESIII detector, we perform a search for the rare decay $etarightarrow 4pi^{0}$ via $J/psirightarrowgammaeta$. No significant $eta$ signal is observed in the invariant mass spectrum
A measurement of the double-polarization observable $E$ for the reaction $gamma pto pi^0 p$ is reported. The data were taken with the CBELSA/TAPS experiment at the ELSA facility in Bonn using the Bonn frozen-spin butanol (C$_4$H$_9$OH) target, which
We observe a net beam-excess of $8.7 pm 6.3$ (stat) $pm 2.4$ (syst) events, above 160 MeV, resulting from the charged-current reaction of $ u_{mu}$ and/or $bar u_{mu}$ on C and H in the LSND detector. No beam related muon background is expected in th