ﻻ يوجد ملخص باللغة العربية
The pulsating hydrogen atmosphere white dwarf star G 117-B15A has been observed since 1974. Its main pulsation period at 215.19738823(63) s, observed in optical light curves, varies by only (5.12+/-0.82)x10^{-15} s/s and shows no glitches, as pulsars do. The observed rate of period change corresponds to a change of the pulsation period by 1 s in 6.2 million years. We demonstrate that this exceptional optical clock can continue to put stringent limits on fundamental physics, such as constraints on interaction from hypothetical dark matter particles, as well as to search for the presence of external substellar companions.
We report our measurement of the rate of change of period with time dP/dt for the 215 s periodicity in the pulsating white dwarf G 117-B15A, the most stable optical clock known. After 31 years of observations, we have finally obtained a 4 sigma measu
We present analysis of a new pulsating helium-atmosphere (DB) white dwarf, EPIC~228782059, discovered from 55.1~days of {em K2} photometry. The long duration, high quality light curves reveal 11 independent dipole and quadruple modes, from which we d
At present, a large number of pulsating white dwarf (WD) stars is being discovered either from Earth-based surveys such as the Sloan Digital Sky Survey, or through observations from space (e.g., the Kepler mission). The asteroseismological techniques
We now have a good measurement of the cooling rate of G117-B15A. In the near future, we will have equally well determined cooling rates for other pulsating white dwarfs, including R548. The ability to measure their cooling rates offers us a unique wa
We report 323 hours of nearly uninterrupted time series photometric observations of the DBV star GD 358 acquired with the Whole Earth Telescope (WET) during May 23rd to June 8th, 2000. We acquired more than 232 000 independent measurements. We also r