ﻻ يوجد ملخص باللغة العربية
Characterized by cyclic axisymmetric perturbations to both the magnetic and fluid parameters, magnetohydrodynamic fast sausage modes (FSMs) have proven useful for solar coronal seismology given their strong dispersion. This review starts by summarizing the dispersive properties of the FSMs in the canonical configuration where the equilibrium quantities are transversely structured in a step fashion. With this preparation we then review the recent theoretical studies on coronal FSMs, showing that the canonical dispersion features have been better understood physically, and further exploited seismologically. In addition, we show that departures from the canonical equilibrium configuration have led to qualitatively different dispersion features, thereby substantially broadening the range of observations that FSMs can be invoked to account for. We also summarize the advances in forward modeling studies, emphasizing the intricacies in interpreting observed oscillatory signals in terms of FSMs. All these advances notwithstanding, we offer a list of aspects that remain to be better addressed, with the physical connection of coronal FSMs to the quasi-periodic pulsations in solar flares particularly noteworthy.
The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity
We numerically investigate the excitation and temporal evolution of oscillations in a two-dimensional coronal arcade by including the three-dimensional propagation of perturbations. The time evolution of impulsively generated perturbations is studied
Transverse MHD waves permeate the solar atmosphere and are a candidate for coronal heating. However, the origin of these waves is still unclear. In this work, we analyse coordinated observations from textit{Hinode}/SOT and textit{IRIS} of a prominenc
Slow magnetoacoustic waves are routinely observed in astrophysical plasma systems such as the solar corona. As a slow wave propagates through a plasma, it modifies the equilibrium quantities of density, temperature, and magnetic field. In the corona
Magnetic loops filled with hot plasma are the main building blocks of the solar corona. Usually they have lengths of the order of the barometric scale height in the corona that is 50 Mm. Previously it has been suggested that miniatu