ﻻ يوجد ملخص باللغة العربية
The article is a study of two algebraic structures, the `contrapositionally complemented pseudo-Boolean algebra (ccpBa) and `contrapositionally $vee$ complemented pseudo-Boolean algebra (c$vee$cpBa). The algebras have recently been obtained from a topos-theoretic study of categories of rough sets. The salient feature of these algebras is that there are two negations, one intuitionistic and another minimal in nature, along with a condition connecting the two operators. We study properties of these algebras, give examples, and compare them with relevant existing algebras. `Intuitionistic Logic with Minimal Negation (ILM) corresponding to ccpBas and its extension ILM-${vee}$ for c$vee$cpBas, are then investigated. Besides its relations with intuitionistic and minimal logics, ILM is observed to be related to Peirces logic. With a focus on properties of the two negations, two kinds of relational semantics for ILM and ILM-${vee}$ are obtained, and an inter-translation between the two semantics is provided. Extracting features of the two negations in the algebras, a further investigation is made, following logical studies of negations that define the operators independently of the binary operator of implication. Using Dunns logical framework for the purpose, two logics $K_{im}$ and $K_{im-{vee}}$ are presented, where the language does not include implication. $K_{im}$-algebras are reducts of ccpBas. The negations in the algebras are shown to occupy distinct positions in an enhanced form of Dunns Kite of negations. Relational semantics for $K_{im}$ and $K_{im-{vee}}$ are given, based on Dunns compatibility frames. Finally, relationships are established between the different algebraic and relational semantics for the logics defined in the work.
In this article we investigate the notion and basic properties of Boolean algebras and prove the Stones representation theorem. The relations of Boolean algebras to logic and to set theory will be studied and, in particular, a neat proof of completen
Boolean-type algebra (BTA) is investigated. A BTA is decomposed into Boolean-type lattice (BTL) and a complementation algebra (CA). When the object set is finite, the matrix expressions of BTL and CA (and then BTA) are presented. The construction and
We present a new approach to ternary Boolean algebras in which negation is derived from the ternary operation. The key aspect is the replacement of complete commutativity by other axioms that do not require the ternary operation to be symmetric.
Let 2<nleq l<m< omega. Let L_n denote first order logic restricted to the first n variables. We show that the omitting types theorem fails dramatically for the n--variable fragments of first order logic with respect to clique guarded semantics, and f
In generic realizability for set theories, realizers treat unbounded quantifiers generically. To this form of realizability, we add another layer of extensionality by requiring that realizers ought to act extensionally on realizers, giving rise to a