ﻻ يوجد ملخص باللغة العربية
We study reductions of 6d theories on a $d$-dimensional manifold $M_d$, focusing on the interplay between symmetries, anomalies, and dynamics of the resulting $(6-d)$-dimensional theory $T[M_d]$. We refine and generalize the notion of polarization to polarization on $M_d$, which serves to fix the spectrum of local and extended operators in $T[M_d]$. Another important feature of theories $T[M_d]$ is that they often possess higher-group symmetries, such as 2-group and 3-group symmetries. We study the origin of such symmetries as well as physical implications including symmetry breaking and symmetry enhancement in the renormalization group flow. To better probe the IR physics, we also investigate the t Hooft anomaly of 5d Chern-Simons matter theories. The present paper focuses on developing the general framework as well as the special case of $d=0$ and 1, while an upcoming paper will discuss the case of $d=2$, $3$ and $4$.
The Hilbert space of a quantum system with internal global symmetry $G$ decomposes into sectors labelled by irreducible representations of $G$. If the system is chaotic, the energies in each sector should separately resemble ordinary random matrix th
We revisit the N=6 superconformal Chern-Simons-matter theories and their supergravity duals in the context of generalized symmetries. This allows us to finally clarify how the $SU(N)times SU(N)$ and $(SU(N)times SU(N))/mathbb{Z}_N$ theories, as well
We investigate a higher-group structure of massless axion electrodynamics in $(3+1)$ dimensions. By using the background gauging method, we show that the higher-form symmetries necessarily have a global semistrict 3-group (2-crossed module) structure
We study the mixed anomaly between the discrete chiral symmetry and general baryon-color-flavor (BCF) backgrounds in $SU(N_c)$ gauge theories with $N_f$ flavors of Dirac fermions in representations ${cal R}_c$ of $N$-ality $n_c$, formulated on non-sp
We study higher-form global symmetries and a higher-group structure of a low-energy limit of $(3+1)$-dimensional axion electrodynamics in a gapped phase described by a topological action. We argue that the higher-form symmetries should have a semi-st