ﻻ يوجد ملخص باللغة العربية
Quantum entanglement is a quantum mechanical phenomenon where the quantum state of a many-body system with many degrees of freedom cannot be described independently of the state of each body with a given degree of freedom, no matter how far apart in space each body is. Entanglement is not only considered a resource in quantum information but also believed to affect complex condensed matter systems. Detecting and quantifying multi-particle entanglement in a many-body system is thus of fundamental significance for both quantum information science and condensed matter physics. Here, we detect and quantify multipartite entanglement in a spin 1/2 Heisenberg antiferromagnetic chain in a bulk solid. Multipartite entanglement was detected using quantum Fisher information which was obtained using dynamic susceptibility measured via inelastic neutron scattering. The scaling behaviour of quantum Fisher information was found to identify the spin 1/2 Heisenberg antiferromagnetic chain to belong to a class of strongly entangled quantum phase transitions with divergent multipartite entanglement.
Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks it is essential for the parties involved to be able to verify if entanglement is present before they
The characterization of entanglement is a central problem for the study of quantum many-body dynamics. Here, we propose the quantum Fisher information as a useful tool for the study of multipartite-entanglement dynamics in many-body systems. We illus
Genuine multipartite entanglement plays important roles in quantum information processing. The detection of genuine multipartite entanglement has been long time a challenging problem in the theory of quantum entanglement. We propose a criterion for d
Many paradoxes of quantum mechanics come from the fact that a quantum system can possess different features at the same time, such as in wave-particle duality or quantum superposition. In recent delayed-choice experiments, a quantum mechanical system
The quantum Fisher information (QFI) represents a fundamental concept in quantum physics. On the one hand, it quantifies the metrological potential of quantum states in quantum-parameter-estimation measurements. On the other hand, it is intrinsically