ﻻ يوجد ملخص باللغة العربية
Using 10 sightlines observed with the Hubble Space Telescope/Cosmic Origins Spectrograph, we study the circumgalactic medium (CGM) and outflows of IC1613, which is a low-mass ($M_*sim10^8~M_odot$), dwarf irregular galaxy on the outskirts of the Local Group. Among the sightlines, 4 are pointed towards UV-bright stars in IC1613, and the other 6 sightlines are background QSOs at impact parameters from 6 kpc ($<0.1R_{200}$) to 61 kpc ($0.6R_{200}$). We detect a number of Si II, Si III, Si IV, C II, and C IV absorbers, most of which have velocities less than the escape velocity of IC1613 and thus are gravitationally bound. The line strengths of these ion absorbers are consistent with the CGM absorbers detected in dwarf galaxies at low redshifts. Assuming that Si II, Si III, and Si IV comprise nearly 100% of the total silicon, we find 3% ($sim$8$times$10$^3~{rm M_odot}$), 2% ($sim$7$times$10$^3~{rm M_odot}$), and 32--42% [$sim$(1.0--1.3)$times$10$^5~{rm M_odot}$] of the silicon mass in the stars, interstellar medium, and within $0.6R_{200}$ of the CGM of IC1613. We also estimate the metal outflow rate to be ${rm dot{M}_{out, Z}geq1.1times10^{-5}~M_odot~yr^{-1}}$ and the instantaneous metal mass loading factor to be $eta_{rm Z}geq0.004$, which are in broad agreement with available observation and simulation values. This work is the first time a dwarf galaxy of such low mass is probed by a number of both QSO and stellar sightlines, and it shows that the CGM of low-mass gas-rich galaxies can be a large reservoir enriched with metals from past and ongoing outflows.
We report a definitive detection of chemically-enriched cool gas around massive, quiescent galaxies at z~0.4-0.7. The result is based on a survey of 37621 luminous red galaxy (LRG)-QSO pairs in SDSS DR12 with projected distance d<500 kpc. The LRGs ar
We present the first characterization of the diffuse gas and metals in the circumgalactic medium of 96 z = 2.9-3.8 Ly$alpha$ emitters (LAEs) detected with the Multi-Unit Spectroscopic Explorer (MUSE) in fields centered on 8 bright background quasars
In order to study the circumgalactic medium (CGM) of galaxies we develop an automated pipeline to estimate the optical continuum of quasars and detect intervening metal absorption line systems with a matched kernel convolution technique and adaptive
IC 1613 is a Local Group dwarf irregular galaxy at a distance of 750 kpc. In this work, we present an analysis of the star formation history (SFH) of a field of $sim200$ square arcmin in the central part of the galaxy. To this aim, we use a novel met
The circumgalactic medium (CGM), which harbors > 50% of all the baryons in a galaxy, is both the reservoir of gas for subsequent star formation and the depository of chemically processed gas, energy, and angular momentum from feedback. As such, the C