ﻻ يوجد ملخص باللغة العربية
We present a study of flare rates, rotation periods, and spectroscopic activity indicators of 125 single stars within 15 parsecs and with masses between 0.1$-$0.3 $M_odot$ observed during the first year of the TESS mission, with the goal of elucidating the relationship between these various magnetically connected phenomena. We gathered multi-epoch high resolution spectra of each target and we measured equivalent widths of the activity indicators Helium I D$_3$, $Halpha$, and the Calcium infrared triplet line at 8542.09 angstroms. We present 18 new rotation periods from MEarth photometry and 19 new rotation periods from TESS photometry. We present a catalog of 1392 flares. After correcting for sensitivity, we find the slope of the flare frequency distribution for all stars to have a standard value of $alpha$ = 1.98 $pm$ 0.02. We determine R$_{31.5}$, the rate of flares per day with energies above E = 3.16$times$10$^{31}$ ergs in the TESS bandpass. We find that below a critical value of $Halpha$ EW = -0.71 angstroms, log R$_{31.5}$ increases linearly with increasing $Halpha$ emission; above this value, log R$_{31.5}$ declines rapidly. The stars divide into two groups: 26% have $Halpha$ in emission, high flare rates with typical values of log R$_{31.5}$ = -1.30 $pm$ 0.08, and have Rossby numbers $<$ 0.50. The remaining 74% show little to no $Halpha$ in emission and exhibit log R$_{31.5}$ $<$ -3.86, with the majority of these stars not showing a single flare during the TESS observations.
M dwarfs with masses 0.1 <= M/M_sol <= 0.3 are under increasing scrutiny because these fully convective stars pose interesting astrophysical questions regarding their magnetic activity and angular momentum history. They also afford the most accessibl
In this work we examine M dwarf rotation rates at a range of ages to establish benchmarks for Mdwarf gyrochronology. This work includes a sample of 713 spectroscopically-classified M0-M8 dwarfs with new rotation rates measured from K2 light curves. W
We present the spectroscopic orbits of eleven nearby, mid-to-late M dwarf binary systems in a variety of configurations: two single-lined binaries (SB1s), seven double-lined binaries (SB2s), one double-lined triple (ST2), and one triple-lined triple
CARMENES is a spectrograph for radial velocity surveys of M dwarfs with the aim of detecting Earth-mass planets orbiting in the habitable zones of their host stars. To ensure an optimal use of the CARMENES Guaranteed Time Observations, in this paper
Studies of the rotation-activity relation of late-type stars are essential to enhance our understanding of stellar dynamos and angular momentum evolution. We study the rotation-activity relation with K2 for M dwarfs where it is especially poorly unde