ﻻ يوجد ملخص باللغة العربية
We prove non asymptotic linear convergence rates for the constrained Anderson acceleration extrapolation scheme. These guarantees come from new upper bounds on the constrained Chebyshev problem, which consists in minimizing the maximum absolute value of a polynomial on a bounded real interval with $l_1$ constraints on its coefficients vector. Constrained Anderson Acceleration has a numerical cost comparable to that of the original scheme.
Let $A$ be a real $ntimes n$ matrix and $z,bin mathbb R^n$. The piecewise linear equation system $z-Avert zvert = b$ is called an textit{absolute value equation}. We consider two solvers for this problem, one direct, one semi-iterative, and extend their previously known ranges of convergence.
The randomized sparse Kaczmarz method was recently proposed to recover sparse solutions of linear systems. In this work, we introduce a greedy variant of the randomized sparse Kaczmarz method by employing the sampling Kaczmarz-Motzkin method, and pro
We study an optimization problem that aims to determine the shape of an obstacle that is submerged in a fluid governed by the Stokes equations. The mentioned flow takes place in a channel, which motivated the imposition of a Poiseuille-like input fun
We propose a novel method to accelerate Lloyds algorithm for K-Means clustering. Unlike previous acceleration approaches that reduce computational cost per iterations or improve initialization, our approach is focused on reducing the number of iterat
Anderson acceleration (AA) is a popular method for accelerating fixed-point iterations, but may suffer from instability and stagnation. We propose a globalization method for AA to improve stability and achieve unified global and local convergence. Un