ترغب بنشر مسار تعليمي؟ اضغط هنا

Flavoured Neutrinoless Double Beta Decay

87   0   0.0 ( 0 )
 نشر من قبل Sudip Jana
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss a mechanism of neutrinoless double beta decay, where neutrinos of different flavours come into play. This is realized by effective flavour-violating scalar interactions. As one consequence, we find that within the normal mass ordering the neutrino effective mass may no longer vanish due to contributions from other flavours. We evaluate the necessary nuclear matrix elements, consider the interference between the standard diagram and the new scalar one, and analyze a UV-complete model that realizes the scalar interaction. Tests of the complete model are possible at colliders and future neutrino experiments. Our scenario represents an alternative mechanism for neutrinoless double beta decay, where nevertheless lepton number violation resides only in Majorana mass terms of light neutrinos.



قيم البحث

اقرأ أيضاً

Neutrinoless double beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that lepton number is not conserved and the neutrinos are Majorana particles. More importantly it is our best hope for determining t he absolute neutrino mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles have to be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements, a formidable task. To this end, we review the sophisticated nuclear structure approaches recently been developed, which give confidence that the needed nuclear matrix elements can be reliably calculated. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. If a signal is found, it will be a tremendous accomplishment. Then, of course, the real task is going to be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute or even dominate this process. We will, in particular, consider the following processes: (i)The neutrino induced, but neutrino mass independent contribution. (ii)Heavy left and/or right handed neutrino mass contributions. (iii)Intermediate scalars (doubly charged etc). (iv)Supersymmetric (SUSY) contributions. We will show that it is possible to disentangle the various mechanisms and unambiguously extract the important neutrino mass scale, if all the signatures of the reaction are searched in a sufficient number of nuclear isotopes.
We quantify the extent to which future experiments will test the existence of neutrinoless double-beta decay mediated by light neutrinos with inverted-ordered masses. While it remains difficult to compare measurements performed with different isotope s, we find that future searches will fully test the inverted ordering scenario, as a global, multi-isotope endeavor. They will also test other possible mechanisms driving the decay, including a large uncharted region of the allowed parameter space assuming that neutrino masses follow the normal ordering.
In the last two decades the search for neutrinoless double beta decay has evolved into one of the highest priorities for understanding neutrinos and the origin of mass. The main reason for this paradigm shift has been the discovery of neutrino oscill ations, which clearly established the existence of massive neutrinos. An additional motivation for conducting such searches comes from the existence of an unconfirmed, but not refuted, claim of evidence for neutrinoless double decay in $^{76}text{Ge}$. As a consequence, a new generation of experiments, employing different detection techniques and $betabeta$ isotopes, is being actively promoted by experimental groups across the world. In addition, nuclear theorists are making remarkable progress in the calculation of the neutrinoless double beta decay nuclear matrix elements, thus eliminating a substantial part of the theoretical uncertainties affecting the particle physics interpretation of this process. In this report, we review the main aspects of the double beta decay process and some of the most relevant experiments. The picture that emerges is one where searching for neutrinoless double beta decay is recognized to have both far-reaching theoretical implications and promising prospects for experimental observation in the near future.
162 - E. Lisi 2015
Theoretical estimates for the half life of neutrinoless double beta decay in candidate nuclei are affected by both particle and nuclear physics uncertainties, which may complicate the interpretation of decay signals or limits. We study such uncertain ties and their degeneracies in the following context: three nuclei of great interest for large-scale experiments (76-Ge, 130-Te, 136-Xe), two representative particle physics mechanisms (light and heavy Majorana neutrino exchange), and a large set of nuclear matrix elements (NME), computed within the quasiparticle random phase approximation (QRPA). It turns out that the main theoretical uncertainties, associated with the effective axial coupling g_A and with the nucleon-nucleon potential, can be parametrized in terms of NME rescaling factors, up to small residuals. From this parametrization, the following QRPA features emerge: (1) the NME dependence on g_A is milder than quadratic; (2) in each of the two mechanisms, the relevant lepton number violating parameter is largely degenerate with the NME rescaling factors; and (3) the light and heavy neutrino exchange mechanisms are basically degenerate in the above three nuclei. We comment on the challenging theoretical and experimental improvements required to reduce such particle and nuclear physics uncertainties and their degeneracies.
We comment on the recent claim for the experimental observation of neutrinoless double-beta decay. We discuss several limitations in the analysis provided in that paper and conclude that there is no basis for the presented claim.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا