ﻻ يوجد ملخص باللغة العربية
We propose a nonvolatile, reconfigurable, and narrowband mid-infrared bandpass filter based on surface lattice resonance in phase-change material Ge2Sb2Te5 (GST). The proposed filter is composed of a two-dimensional gold nanorod array embedded in a thick GST film. Results show that when GST transits from the amorphous state to the crystalline state, the narrowband reflection spectrum of the proposed filter is tuned from 3.197 {mu}m to 4.795 {mu}m, covering the majority of the mid-infrared regime, the peak reflectance decreases from 72.6% to 25.8%, and the corresponding Q-factor decreases from 19.6 to 10.3. We show that the spectral tuning range can be adjusted by varying the incidence angle or the lattice period. By properly designing the gold nanorod sizes, we also show that the Q-factor can be greatly increased to 70 at the cost of relatively smaller peak reflection efficiencies, and that the peak reflection efficiency can be further increased to 80% at the cost of relatively smaller Q-factors. We expect this work will advance the engineering of GST-based nonvalatile tunable surface lattice resonances and will promote their applications especially in reconfigurable narrowband filters.
Metasurfaces offer the potential to control light propagation at the nanoscale for applications in both free-space and surface-confined geometries. Existing metasurfaces frequently utilize metallic polaritonic elements with high absorption losses, an
The mid-wave infrared (MWIR) spectral region (3-5 {mu}m) is important to a vast variety of applications in imaging, sensing, spectroscopy, surgery, and optical communications. Efficient third-harmonic generation (THG), converting light from the MWIR
Plasmonic sensing is an established technology for real-time biomedical diagnostics and air-quality monitoring. While intensity and wavelength tracking are the most commonly used interrogation methods for Surface Plasmon Resonance (SPR), several work
Motivated by the recent growing demand in dynamically-controlled flat optics, we take advantage of a hybrid phase-change plasmonic metasurface (MS) to effectively tailor the amplitude, phase, and polarization responses of the incident beam within a u
Energy-efficient programmable photonic integrated circuits (PICs) are the cornerstone of on-chip classical and quantum optical technologies. Optical phase shifters constitute the fundamental building blocks which enable these programmable PICs. Thus