ﻻ يوجد ملخص باللغة العربية
Spintronics, since its inception, has mainly focused on ferromagnetic materials for manipulating the spin degree of freedom in addition to the charge degree of freedom, whereas much less attention has been paid to antiferromagnetic materials. Thanks to the advances of micro-nano-fabrication techniques and the electrical control of the Neel order parameter, antiferromagnetic spintronics is booming as a result of abundant room temperature materials, robustness against external fields and dipolar coupling, and rapid dynamics in the terahertz regime. For the purpose of applications of antiferromagnets, it is essential to have a comprehensive understanding of the antiferromagnetic dynamics at the microscopic level. Here, we first review the general form of equations that govern both antiferromagnetic and ferrimagnetic dynamics. This general form unifies the previous theories in the literature. We also provide a survey for the recent progress related to antiferromagnetic dynamics, including the motion of antiferromagnetic domain walls and skyrmions, the spin pumping and quantum antiferromagnetic spintronics. In particular, open problems in several topics are outlined. Furthermore, we discuss the development of antiferromagnetic quantum magnonics and its potential integration with modern information science and technology.
Inducing long-range magnetic order in three-dimensional topological insulators can gap the Diraclike metallic surface states, leading to exotic new phases such as the quantum anomalous Hall effect or the axion insulator state. These magnetic topologi
The interest in two-dimensional and layered materials continues to expand, driven by the compelling properties of individual atomic layers that can be stacked and/or twisted into synthetic heterostructures. The plethora of electronic properties as we
Spin waves (SWs), the collective precessional motion of spins in a magnetic system, have been proposed as a promising alternative system with low-power consumption for encoding information. Spin Hall nano-oscillator (SHNO), a new-type spintronic nano
Individual, luminescent point defects in solids so called color centers are atomic-sized quantum systems enabling sensing and imaging with nanoscale spatial resolution. In this overview, we introduce nanoscale sensing based on individual nitrogen vac
We report point-contact measurements of anisotropic magnetoresistance (AMR) in a single crystal of antiferromagnetic (AFM) Mott insulator Sr2IrO4. The point-contact technique is used here as a local probe of magnetotransport properties on the nanosca