ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3a

153   0   0.0 ( 0 )
 نشر من قبل LSC P&P Committee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We search for gravitational-wave transients associated with gamma-ray bursts detected by the Fermi and Swift satellites during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15:00 UTC - 1 October 2019 15:00 UTC). 105 gamma-ray bursts were analyzed using a search for generic gravitational-wave transients; 32 gamma-ray bursts were analyzed with a search that specifically targets neutron star binary mergers as short gamma-ray burst progenitors. We describe a method to calculate the probability that triggers from the binary merger targeted search are astrophysical and apply that method to the most significant gamma-ray bursts in that search. We find no significant evidence for gravitational-wave signals associated with the gamma-ray bursts that we followed up, nor for a population of unidentified subthreshold signals. We consider several source types and signal morphologies, and report for these lower bounds on the distance to each gamma-ray burst.

قيم البحث

اقرأ أيضاً

We present the results of a search for gravitational waves associated with 154 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments in 2009-2010, during the sixth LIGO science run and the second and third Virgo science runs. We perform two distinct searches: a modeled search for coalescences of either two neutron stars or a neutron star and black hole; and a search for generic, unmodeled gravitational-wave bursts. We find no evidence for gravitational-wave counterparts, either with any individual GRB in this sample or with the population as a whole. For all GRBs we place lower bounds on the distance to the progenitor, under the optimistic assumption of a gravitational-wave emission energy of 10^-2 M c^2 at 150 Hz, with a median limit of 17 Mpc. For short hard GRBs we place exclusion distances on binary neutron star and neutron star-black hole progenitors, using astrophysically motivated priors on the source parameters, with median values of 16 Mpc and 28 Mpc respectively. These distance limits, while significantly larger than for a search that is not aided by GRB satellite observations, are not large enough to expect a coincidence with a GRB. However, projecting these exclusions to the sensitivities of Advanced LIGO and Virgo, which should begin operation in 2015, we find that the detection of gravitational waves associated with GRBs will become quite possible.
We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 9 8 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of $<9.38 times 10^{-6}$ (modeled) and $3.1 times 10^{-4}$ (unmodeled). We do not find any significant evidence for gravitational-wave signals associated with the other gamma-ray bursts analyzed, and therefore we report lower bounds on the distance to each of these, assuming various source types and signal morphologies. Using our final modeled search results, short gamma-ray burst observations, and assuming binary neutron star progenitors, we place bounds on the rate of short gamma-ray bursts as a function of redshift for $z leq 1$. We estimate 0.07-1.80 joint detections with Fermi-GBM per year for the 2019-20 LIGO-Virgo observing run and 0.15-3.90 per year when current gravitational-wave detectors are operating at their design sensitivities.
We present the results of a search for gravitational waves associated with 223 gamma-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGOs fifth and sixth science runs and Virgos first, second and third science runs . The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational-wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational-wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational-wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational-wave data is available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational-wave emission energy of $10^{-2}M_{odot}c^2$ at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational-wave detectors, and a resulting examination of prospects for the advanced gravitational-wave detectors.
We present the results of a search for gravitational-wave bursts associated with 137 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments during the fifth LIGO science run and first Virgo science run. The data used in t his analysis were collected from 2005 November 4 to 2007 October 1, and most of the GRB triggers were from the Swift satellite. The search uses a coherent network analysis method that takes into account the different locations and orientations of the interferometers at the three LIGO-Virgo sites. We find no evidence for gravitational-wave burst signals associated with this sample of GRBs. Using simulated short-duration (<1 s) waveforms, we set upper limits on the amplitude of gravitational waves associated with each GRB. We also place lower bounds on the distance to each GRB under the assumption of a fixed energy emission in gravitational waves, with typical limits of D ~ 15 Mpc (E_GW^iso / 0.01 M_o c^2)^1/2 for emission at frequencies around 150 Hz, where the LIGO-Virgo detector network has best sensitivity. We present astrophysical interpretations and implications of these results, and prospects for corresponding searches during future LIGO-Virgo runs.
We present the results of the search for gravitational waves (GWs) associated with $gamma$-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW sign al for any of the 41 $gamma$-ray bursts for which LIGO data are available with sufficient duration. For all $gamma$-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of $10^{-2}M_odot c^2$ were emitted within the $16$-$500,$Hz band, and we find a median 90% confidence limit of 71$,$Mpc at 150$,$Hz. For the subset of 19 short/hard $gamma$-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90$,$Mpc for binary neutron star (BNS) coalescences, and 150 and 139$,$Mpc for neutron star-black hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of 54$,$Mpc ($z=0.0124$). Assuming the $gamma$-ray emission is beamed with a jet half-opening angle $leq 30^{circ}$, we exclude a BNS and a neutron star-black hole in NGC 3313 as the progenitor of this event with confidence $>99$%. Further, we exclude such progenitors up to a distance of 102$,$Mpc and 170$,$Mpc, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا