ﻻ يوجد ملخص باللغة العربية
Multisite medical data sharing is critical in modern clinical practice and medical research. The challenge is to conduct data sharing that preserves individual privacy and data usability. The shortcomings of traditional privacy-enhancing technologies mean that institutions rely on bespoke data sharing contracts. These contracts increase the inefficiency of data sharing and may disincentivize important clinical treatment and medical research. This paper provides a synthesis between two novel advanced privacy enhancing technologies (PETs): Homomorphic Encryption and Secure Multiparty Computation (defined together as Multiparty Homomorphic Encryption or MHE). These PETs provide a mathematical guarantee of privacy, with MHE providing a performance advantage over separately using HE or SMC. We argue MHE fulfills legal requirements for medical data sharing under the General Data Protection Regulation (GDPR) which has set a global benchmark for data protection. Specifically, the data processed and shared using MHE can be considered anonymized data. We explain how MHE can reduce the reliance on customized contractual measures between institutions. The proposed approach can accelerate the pace of medical research whilst offering additional incentives for healthcare and research institutes to employ common data interoperability standards.
The recent spades of cyber security attacks have compromised end users data safety and privacy in Medical Cyber-Physical Systems (MCPS). Traditional standard encryption algorithms for data protection are designed based on a viewpoint of system archit
We measure how effective Privacy Enhancing Technologies (PETs) are at protecting users from website fingerprinting. Our measurements use both experimental and observational methods. Experimental methods allow control, precision, and use on new PETs t
The AN.ON-Next project aims to integrate privacy-enhancing technologies into the internets infrastructure and establish them in the consumer mass market. The technologies in focus include a basis protection at internet service provider level, an im
The rapid growth in digital data forms the basis for a wide range of new services and research, e.g, large-scale medical studies. At the same time, increasingly restrictive privacy concerns and laws are leading to significant overhead in arranging fo
Privacy-preserving genomic data sharing is prominent to increase the pace of genomic research, and hence to pave the way towards personalized genomic medicine. In this paper, we introduce ($epsilon , T$)-dependent local differential privacy (LDP) for