ﻻ يوجد ملخص باللغة العربية
We examine the extent to which primordial black holes (PBHs) can constitute the observed dark matter while also giving rise to the measured matter-antimatter asymmetry and account for the observed baryon abundance through asymmetric Hawking radiation generated by a derivative coupling of curvature to the baryon-lepton current. We consider both broad and monochromatic mass spectra for this purpose. For the monochromatic spectrum we find that the correct dark matter and baryon energy densities are recovered for peak masses of the spectrum of $M_{rm pk} geq 10^{12}$ kg whereas for the broad case the observed energy densities can be reproduced regardless of peak mass. Adopting some simplifications for the early-time expansion history as a first approximation, we also find that the measured baryon asymmetry can be recovered within an order of magnitude. We argue furthermore that the correct value of the baryon-lepton yield can in principle be retrieved for scenarios where a significant amount of the radiation is produced by PBH decay during or after reheating, as is expected when the decaying PBHs also cause reheating, or when an early matter-dominated phase is considered. We conclude from this first analysis that the model merits further investigation.
We study the dynamics of a spectator Higgs field which stochastically evolves during inflation onto near-critical trajectories on the edge of a runaway instability. We show that its fluctuations do not produce primordial black holes (PBHs) in suffici
Although the dark matter is usually assumed to be some form of elementary particle, primordial black holes (PBHs) could also provide some of it. However, various constraints restrict the possible mass windows to $10^{16}$ - $10^{17},$g, $10^{20}$ - $
We discuss the hypothesis that the cosmological baryon asymmetry and entropy were produced in the early Universe by the primordial black hole (PBHs) evaporation.
If primordial black holes (PBHs) formed at the quark-hadron epoch, their mass must be close to the Chandrasekhar limit, this also being the characteristic mass of stars. If they provide the dark matter (DM), the collapse fraction must be of order the
The LIGO discoveries have rekindled suggestions that primordial black holes (BHs) may constitute part to all of the dark matter (DM) in the Universe. Such suggestions came from 1) the observed merger rate of the BHs, 2) their unusual masses, 3) their