ﻻ يوجد ملخص باللغة العربية
The proposals for realizing exotic particles through coupling of quantum Hall effect to superconductivity involve spatially non-uniform magnetic fields. As a step toward that goal, we study, both theoretically and experimentally, a system of Dirac electrons exposed to an Abrikosov flux lattice. We theoretically find that non-uniform magnetic field causes a carrier-density dependent reduction of the Hall conductivity. Our studies show that this reduction originates from a rather subtle effect: a levitation of the Berry curvature within Landau levels broadened by the non-uniform magnetic field. Experimentally, we measure the magneto-transport in a monolayer graphene-hexagonal boron nitride - niobium diselenide (NbSe$_2$) heterostructure, and find a density-dependent reduction of the Hall resistivity of graphene as the temperature is lowered from above the superconducting critical temperature of NbSe$_2$, when the magnetic field is uniform, to below, where the magnetic field bunches into an Abrikosov flux lattice.
Spin-Hall conductivity (SHC) of fully relativistic (4x4 matrix) Dirac electrons is studied based on the Kubo formula aiming at possible application to bismuth and bismuth-antimony alloys. It is found that there are two distinct contributions to SHC,
Existing investigations of the anomalous Hall effect i.e. a current flowing transverse to the electric field in the absence of an external magnetic field) are concerned with the transport current. However, for many applications one needs to know the
Gapped graphene has been proposed to be a good platform to observe the valley Hall effect, a transport phenomenon involving the flow of electrons that are characterized by different valley indices. In the present work, we show that this phenomenon is
Spin-Hall conductivity $sigma_{{rm s}xy}$ and orbital susceptibility $chi$ are investigated for the anisotropic Wolff Hamiltonian, which is an effective Hamiltonian common to Dirac electrons in solids. It is found that, both for $sigma_{{rm s}xy}$ an
We numerically study the interplay of band structure, topological invariant and disorder effect in two-dimensional electron system of graphene in a magnetic field. Two emph{distinct} quantum Hall effect (QHE) regimes exist in the energy band with the