ﻻ يوجد ملخص باللغة العربية
Current mainstream of CT reconstruction methods based on deep learning usually needs to fix the scanning geometry and dose level, which will significantly aggravate the training cost and need more training data for clinical application. In this paper, we propose a parameter-dependent framework (PDF) which trains data with multiple scanning geometries and dose levels simultaneously. In the proposed PDF, the geometry and dose level are parameterized and fed into two multi-layer perceptrons (MLPs). The MLPs are leveraged to modulate the feature maps of CT reconstruction network, which condition the network outputs on different scanning geometries and dose levels. The experiments show that our proposed method can obtain competing performance similar to the original network trained with specific geometry and dose level, which can efficiently save the extra training cost for multiple scanning geometries and dose levels.
Recent years have witnessed growing interest in machine learning-based models and techniques for low-dose X-ray CT (LDCT) imaging tasks. The methods can typically be categorized into supervised learning methods and unsupervised or model-based learnin
A number of image-processing problems can be formulated as optimization problems. The objective function typically contains several terms specifically designed for different purposes. Parameters in front of these terms are used to control the relativ
X-ray Computed Tomography (CT) is an important tool in medical imaging to obtain a direct visualization of patient anatomy. However, the x-ray radiation exposure leads to the concern of lifetime cancer risk. Low-dose CT scan can reduce the radiation
By the ALARA (As Low As Reasonably Achievable) principle, ultra-low-dose CT reconstruction is a holy grail to minimize cancer risks and genetic damages, especially for children. With the development of medical CT technologies, the iterative algorithm
Lowering the radiation dose in computed tomography (CT) can greatly reduce the potential risk to public health. However, the reconstructed images from the dose-reduced CT or low-dose CT (LDCT) suffer from severe noise, compromising the subsequent dia