ﻻ يوجد ملخص باللغة العربية
In an emulsion-counter hybrid experiment performed at J-PARC, a $Xi^-$ absorption event was observed which decayed into twin single-$Lambda$ hypernuclei. Kinematic calculations enabled a unique identification of the reaction process as $Xi^{-} + ^{14}$N$ rightarrow ^{10}_Lambda$Be + $^5_Lambda$He. For the binding energy of the $Xi^{-}$ hyperon in the $Xi^-$-$^{14}$N system a value of $1.27 pm 0.21$ MeV was deduced. The energy level of $Xi^-$ is likely a nuclear $1p$ state which indicates a weak ${Xi}N$-$LambdaLambda$ coupling.
Bound-systems of $Xi^-$--$^{14}_{}{rm N}$ are studied via $Xi^-$ capture at rest followed by emission of a twin single-$Lambda$ hypernucleus in the emulsion detectors. Two events forming extremely deep $Xi^-$ bound states were obtained by analysis of
We study the coupled $LambdaLambda nn-Xi^- pnn$ system to check whether the inclusion of channel coupling is able to bind the $LambdaLambda nn$ system. We use a separable potential three-body model of the coupled $LambdaLambda nn - Xi^- pnn$ system a
We have performed an exclusive measurement of the $K^{-}+! ~^{3}{rm He} to Lambda pn$ reaction at an incident kaon momentum of $1 {rm GeV}/c$.In the $Lambda p$ invariant mass spectrum, a clear peak was observed below the mass threshold of $bar{K}!+!N
Neutron-rich light nuclei and their reactions play an important role for the creation of chemical elements. Here, data from a Coulomb dissociation experiment on $^{20,21}$N are reported. Relativistic $^{20,21}$N ions impinged on a lead target and the
The first-excited state $g$~factor of $^{26}$Mg has been measured relative to the $g$ factor of the $^{24}$Mg($2^+_1$) state using the high-velocity transient-field technique, giving $g=+0.86pm0.10$. This new measurement is in strong disagreement wit