ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical and quantum (2+1)-dimensional spatially homogeneous string cosmology

65   0   0.0 ( 0 )
 نشر من قبل Fezzeh Naderi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce three families of classical and quantum solutions to the leading order of string effective action on spatially homogeneous $(2+1)$-dimensional space-times with the sources given by the contributions of dilaton, antisymmetric gauge $B$-field, and central charge deficit term $Lambda$. At the quantum level, solutions of Wheeler-DeWitt equations have been enriched by considering the quant



قيم البحث

اقرأ أيضاً

71 - M. Gasperini 2021
We present a short review of possible applications of the Wheeler-De Witt equation to cosmological models based on the low-energy string effective action, and characterised by an initial regime of asymptotically flat, low energy, weak coupling evolut ion. Considering in particular a class of duality-related (but classically disconnected) background solutions, we shall discuss the possibility of quantum transitions between the phases of pre-big bang and post-big bang evolution. We will show that it is possible, in such a context, to represent the birth of our Universe as a quantum process of tunneling or anti-tunneling from an initial state asymptotically approaching the string perturbative vacuum.
This is the second paper in a series of four in which we use space adiabatic methods in order to incorporate backreactions among the homogeneous and between the homogeneous and inhomogeneous degrees of freedom in quantum cosmological perturbation the ory. The purpose of the present paper is twofold. On the one hand, it illustrates the formalism of space adiabatic perturbation theory (SAPT) for two simple quantum mechanical toy models. On the other, it proves the main point, namely that backreactions lead to additional correction terms in effective Hamiltonians that one would otherwise neglect in a crude Born-Oppenheimer approximation. The first model that we consider is a harmonic oscillator coupled to an anharmonic oscillator. We chose it because it displays many similarities with the more interesting second model describing the coupling between an inflaton and gravity restricted to the purely homogeneous and isotropic sector. These results have potential phenomenological consequences in particular for quantum cosmological theories describing big bounces such as Loop Quantum Cosmology (LQC).
We construct a generalized class of quantum gravity condensate states, that allows the description of continuum homogeneous quantum geometries within the full theory. They are based on similar ideas already applied to extract effective cosmological d ynamics from the group field theory formalism, and thus also from loop quantum gravity. However, they represent an improvement over the simplest condensates used in the literature, in that they are defined by an infinite superposition of graph-based states encoding in a precise way the topology of the spatial manifold. The construction is based on the definition of refinement operators on spin network states, written in a second quantized language. The construction lends itself easily to be applied also to the case of spherically symmetric quantum geometries.
161 - Moncy V. John 2014
We find a Friedmann model with appropriate matter/energy density such that the solution of the Wheeler-DeWitt equation exactly corresponds to the classical evolution. The well-known problems in quantum cosmology disappear in the resulting coasting ev olution. The exact quantum-classical correspondence is demonstrated with the help of the de Broglie-Bohm and modified de Broglie-Bohm approaches to quantum mechanics. It is reassuring that such a solution leads to a robust model for the universe, which agrees well with cosmological expansion indicated by SNe Ia data.
343 - J.W. van Holten 2017
Using a D = 1 supergravity framework I construct a super-Friedmann equation for an isotropic and homogenous universe including dynamical scalar fields. In the context of quantum theory this becomes an equation for a wave-function of the universe of s pinorial type, the Wheeler-DeWitt- Dirac equation. It is argued that a cosmological constant breaks a certain chiral symmetry of this equation, a symmetry in the Hilbert space of universe states, which could protect a small cosmological constant from being affected by large quantum corrections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا