ﻻ يوجد ملخص باللغة العربية
This paper presents a novel Jacobi-style iteration algorithm for solving the problem of distributed submodular maximization, in which each agent determines its own strategy from a finite set so that the global submodular objective function is jointly maximized. Building on the multi-linear extension of the global submodular function, we expect to achieve the solution from a probabilistic, rather than deterministic, perspective, and thus transfer the considered problem from a discrete domain into a continuous domain. Since it is observed that an unbiased estimation of the gradient of multi-linear extension function~can be obtained by sampling the agents local decisions, a projected stochastic gradient algorithm is proposed to solve the problem. Our algorithm enables the distributed updates among all individual agents and is proved to asymptotically converge to a desirable equilibrium solution. Such an equilibrium solution is guaranteed to achieve at least 1/2-suboptimal bound, which is comparable to the state-of-art in the literature. Moreover, we further enhance the proposed algorithm by handling the scenario in which agents communication delays are present. The enhanced algorithmic framework admits a more realistic distributed implementation of our approach. Finally, a movie recommendation task is conducted on a real-world movie rating data set, to validate the numerical performance of the proposed algorithms.
Many large-scale machine learning problems--clustering, non-parametric learning, kernel machines, etc.--require selecting a small yet representative subset from a large dataset. Such problems can often be reduced to maximizing a submodular set functi
Most existing work uses dual decomposition and subgradient methods to solve Network Utility Maximization (NUM) problems in a distributed manner, which suffer from slow rate of convergence properties. This work develops an alternative distributed Newt
An important issue in todays electricity markets is the management of flexibilities offered by new practices, such as smart home appliances or electric vehicles. By inducing changes in the behavior of residential electric utilities, demand response (
A variety of large-scale machine learning problems can be cast as instances of constrained submodular maximization. Existing approaches for distributed submodular maximization have a critical drawback: The capacity - number of instances that can fit
Continuous submodular functions are a category of generally non-convex/non-concave functions with a wide spectrum of applications. The celebrated property of this class of functions - continuous submodularity - enables both exact minimization and app