ﻻ يوجد ملخص باللغة العربية
We present the dynamic response of a connected Kagome artificial spin ice with emphasis on the effect of the vertex magnetization configuration on the mode characteristics. We use broadband ferromagnetic resonance (FMR) spectroscopy and micromagnetic simulations to identify and characterize resonant modes. We find the mode frequencies of elongated, single-domain film segments not only depend on the orientation of their easy-axis with respect to the applied magnetic field, but also depend on the vertex magnetization configuration, which suggests control over the FMR mode can be accomplished by altering the vertex magnetization. Moreover, we study differences between the vertex center mode (VCM) and the localized domain wall (LDW) mode. We show that the LDW mode acts as a signature of the domain wall (DW) nucleation process and the DW dynamics active during segment reversal events. The results show the VCM and LDW modes can be controlled using a field protocol, which has important implications for applications in magnonic and spintronic devices.
We have measured the angular dependence of ferromagnetic resonance (FMR) spectra for Fibonacci-distorted, Kagome artificial spin ice (ASI). The number of strong modes in the FMR spectra depend on the orientation of the applied DC magnetic field. In a
Magnetization dynamics in an artificial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich s
We report angular-dependent spin-wave spectroscopy on kagome artificial spin ice made of large arrays of interconnected Ni80Fe20 nanobars. Spectra taken in saturated and disordered states exhibit a series of resonances with characteristic in-plane an
The study of magnetic correlations in dipolar-coupled nanomagnet systems with synchrotron x-ray scattering provides a means to uncover emergent phenomena and exotic phases, in particular in systems with thermally active magnetic moments. From the dif
We report the dependence of the magnetization dynamics in a square artificial spin-ice lattice on the in-plane magnetic field angle. Using two complementary measurement techniques - broadband ferromagnetic resonance and micro-focused Brillouin light