ﻻ يوجد ملخص باللغة العربية
We present a Bayesian data fusion method to approximate a posterior distribution from an ensemble of particle estimates that only have access to subsets of the data. Our approach relies on approximate probabilistic inference of model parameters through Monte Carlo methods, followed by an update and resample scheme related to multiple importance sampling to combine information from the initial estimates. We show the method is convergent in the particle limit and directly suited to application on multi-sensor data fusion problems by demonstrating efficacy on a multi-sensor Keplerian orbit determination problem and a bearings-only tracking problem.
In this paper, we propose a Bayesian approach to obtain a sparse representation of the effect of a categorical predictor in regression type models. As the effect of a categorical predictor is captured by a group of level effects, sparsity cannot only
Bayesian causal inference offers a principled approach to policy evaluation of proposed interventions on mediators or time-varying exposures. We outline a general approach to the estimation of causal quantities for settings with time-varying confound
We develop a novel hybrid method for Bayesian network structure learning called partitioned hybrid greedy search (pHGS), composed of three distinct yet compatible new algorithms: Partitioned PC (pPC) accelerates skeleton learning via a divide-and-con
We introduce the UPG package for highly efficient Bayesian inference in probit, logit, multinomial logit and binomial logit models. UPG offers a convenient estimation framework for balanced and imbalanced data settings where sampling efficiency is en
Due to the ease of modern data collection, applied statisticians often have access to a large set of covariates that they wish to relate to some observed outcome. Generalized linear models (GLMs) offer a particularly interpretable framework for such