ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling of Magneto-Rotational Stellar Evolution I. Method and first applications

157   0   0.0 ( 0 )
 نشر من قبل Koh Takahashi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While magnetic fields have long been considered to be important for the evolution of magnetic non-degenerate stars and compact stars, it has become clear in recent years that actually all of the stars are deeply affected. This is particularly true regarding their internal angular momentum distribution, but magnetic fields may also influence internal mixing processes and even the fate of the star. We propose a new framework for stellar evolution simulations, in which the interplay between magnetic field, rotation, mass loss, and changes in the stellar density and temperature distributions are treated self-consistently. For average large-scale stellar magnetic fields which are symmetric to the axis of rotation of the star, we derive 1D evolution equations for the toroidal and poloidal components from the mean-field MHD equation by applying Alfvens theorem, and a conservative form of the angular momentum transfer due to the Lorentz force is formulated. We implement our formalism into a numerical stellar evolution code and simulate the magneto-rotational evolution of 1.5 M$_odot$ stars. The Lorentz force aided by the $Omega$ effect imposes torsional Alfven waves propagating through the magnetized medium, leading to near-rigid rotation within the Alfven timescale. Our models with different initial spins and B-fields can reproduce the main observed properties of Ap/Bp stars. Calculations continued to the red-giant regime show a pronounced core-envelope coupling, which reproduces the core and surface rotation periods determined by asteroseismic observations.


قيم البحث

اقرأ أيضاً

Bearing in mind the application to core-collapse supernovae, we study nonlinear properties of the magneto-rotational instability (MRI) by means of three- dimensional simulations in the framework of a local shearing box approximation. By changing syst ematically the shear rates that symbolize the degree of differential rotation in nascent proto-neutron stars (PNSs), we derive a scaling relation between the turbulent stress sustained by the MRI and the shear- vorticity ratio. Our parametric survey shows a power-law scaling between the turbulent stress ($<< w_{rm tot}>>$) and the shear- vorticity ratio ($g_q$) as $<<w_{rm tot}>> propto g_q^{delta}$ with its index $delta sim 0.5$. The MRI-amplified magnetic energy has a similar scaling relative to the turbulent stress, while the Maxwell stress has slightly smaller power-law index ($sim 0.36$). By modeling the effect of viscous heating rates due to the MRI turbulence, we show that the stronger magnetic fields or the larger shear rates initially imposed lead to the higher dissipation rates. For a rapidly rotating PNS with the spin period in milliseconds and with strong magnetic fields of $10^{15}$ G, the energy dissipation rate is estimated to exceed $10^{51} {rm erg sec^{-1}}$. Our results suggest that the conventional magnetohydrodynamic (MHD) mechanism of core-collapse supernovae is likely to be affected by the MRI-driven turbulence, which we speculate, on one hand, could harm the MHD-driven explosions due to the dissipation of the shear rotational energy at the PNS surface, on the other hand the energy deposition there might be potentially favorable for the working of the neutrino-heating mechanism.
We consider the pinning of superfluid (neutron) vortices to magnetic fluxtubes associated with a type II (proton) superconductor in neutron star cores. We demonstrate that core pinning affects the spin-down of the system significantly, and discuss im plications for regular radio pulsars and magnetars. We find that magnetars are likely to be in the pinning regime, while most radio pulsars are not. This suggests that the currently inferred magnetic field for magnetars may be overestimated. We also obtain a new timescale for the magnetic field evolution which could be associated with the observed activity in magnetars, provided that the field has a strong toroidal component.
Turbulence in the protoplanetary disks induces collisions between dust grains, and thus facilitates grain growth. We investigate the two fundamental assumptions of the turbulence in obtaining grain collisional velocities -- the kinetic energy spectru m and the turbulence autocorrelation time -- in the context of the turbulence generated by the magneto-rotational instability (MRI). We carry out numerical simulations of the MRI as well as driven turbulence, for a range of physical and numerical parameters. We find that the convergence of the turbulence $alpha$-parameter does not necessarily imply the convergence of the energy spectrum. The MRI turbulence is largely solenoidal, for which we observe a persistent kinetic energy spectrum of $k^{-4/3}$. The same is obtained for solenoidal driven turbulence with and without magnetic field, over more than 1 dex near the dissipation scale. This power-law slope appears to be converged in terms of numerical resolution, and to be due to the bottleneck effect. The kinetic energy in the MRI turbulence peaks at the fastest growing mode of the MRI. In contrast, the magnetic energy peaks at the dissipation scale. The magnetic energy spectrum in the MRI turbulence does not show a clear power-law range, and is almost constant over approximately 1 dex near the dissipation scale. The turbulence autocorrelation time is nearly constant at large scales, limited by the shearing timescale, and shows a power-law drop close to $k^{-1}$ at small scales, with a slope steeper than that of the eddy crossing time. The deviation from the standard picture of the Kolmogorov turbulence with the injection scale at the disk scale height can potentially have a significant impact on the grain collisional velocities.
Thanks to missions like Kepler and TESS, we now have access to tens of thousands of high precision, fast cadence, and long baseline stellar photometric observations. In principle, these light curves encode a vast amount of information about stellar v ariability and, in particular, about the distribution of starspots and other features on their surfaces. Unfortunately, the problem of inferring stellar surface properties from a rotational light curve is famously ill-posed, as it often does not admit a unique solution. Inference about the number, size, contrast, and location of spots can therefore depend very strongly on the assumptions of the model, the regularization scheme, or the prior. The goal of this paper is twofold: (1) to explore the various degeneracies affecting the stellar light curve inversion problem and their effect on what can and cannot be learned from a stellar surface given unresolved photometric measurements; and (2) to motivate ensemble analyses of the light curves of many stars at once as a powerful data-driven alternative to common priors adopted in the literature. We further derive novel results on the dependence of the null space on stellar inclination and limb darkening and show that single-band photometric measurements cannot uniquely constrain quantities like the total spot coverage without the use of strong priors. This is the first in a series of papers devoted to the development of novel algorithms and tools for the analysis of stellar light curves and spectral time series, with the explicit goal of enabling statistically robust inference about their surface properties.
We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux -- the Radiation-Driven Magneto-Acoustic Instability (RMI, a.k.a. the photon bubble instability). The RMI may serve as a persistent source of de nsity, radiative flux, and magnetic field fluctuations in stably-stratified, optically-thick media. The conditions for instability are present in a variety of astrophysical environments, and do not require the radiation pressure to dominate or the magnetic field to be strong. Here we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies. Two-dimensional, time-dependent radiation-MHD simulations of local, stably-stratified domains are conducted with Zeus-MP in the optically-thick, highly-conducting limit. Our results confirm the theoretical expectations of Blaes and Socrates (2003) in that the RMI operates even in gas pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا