ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical Learning Based Joint Antenna Selection and User Scheduling for Single-Cell Massive MIMO Systems

134   0   0.0 ( 0 )
 نشر من قبل Mangqing Guo
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large number of antennas and radio frequency (RF) chains at the base stations (BSs) lead to high energy consumption in massive MIMO systems. Thus, how to improve the energy efficiency (EE) with a computationally efficient approach is a significant challenge in the design of massive MIMO systems. With this motivation, a learning-based stochastic gradient descent algorithm is proposed in this paper to obtain the optimal joint uplink and downlink EE with joint antenna selection and user scheduling in single-cell massive MIMO systems. Using Jensens inequality and the characteristics of wireless channels, a lower bound on the system throughput is obtained. Subsequently, incorporating the power consumption model, the corresponding lower bound on the EE of the system is identified. Finally, learning-based stochastic gradient descent method is used to solve the joint antenna selection and user scheduling problem, which is a combinatorial optimization problem. Rare event simulation is embedded in the learning-based stochastic gradient descent method to generate samples with very small probabilities. In the analysis, both perfect and imperfect channel side information (CSI) at the BS are considered. Minimum mean-square error (MMSE) channel estimation is employed in the study of the imperfect CSI case. In addition, the effect of a constraint on the number of available RF chains in massive MIMO system is investigated considering both perfect and imperfect CSI at the BS.



قيم البحث

اقرأ أيضاً

This work proposes UE selection approaches to mitigate the straggler effect for federated learning (FL) on cell-free massive multiple-input multiple-output networks. To show how these approaches work, we consider a general FL framework with UE sampli ng, and aim to minimize the FL training time in this framework. Here, training updates are (S1) broadcast to all the selected UEs from a central server, (S2) computed at the UEs sampled from the selected UE set, and (S3) sent back to the central server. The first approach mitigates the straggler effect in both Steps (S1) and (S3), while the second approach only Step (S3). Two optimization problems are then formulated to jointly optimize UE selection, transmit power and data rate. These mixed-integer mixed-timescale stochastic nonconvex problems capture the complex interactions among the training time, the straggler effect, and UE selection. By employing the online successive convex approximation approach, we develop a novel algorithm to solve the formulated problems with proven convergence to the neighbourhood of their stationary points. Numerical results confirm that our UE selection designs significantly reduce the training time over baseline approaches, especially in the networks that experience serious straggler effects due to the moderately low density of access points.
Joint user selection (US) and vector precoding (US-VP) is proposed for multiuser multiple-input multiple-output (MU-MIMO) downlink. The main difference between joint US-VP and conventional US is that US depends on data symbols for joint US-VP, wherea s conventional US is independent of data symbols. The replica method is used to analyze the performance of joint US-VP in the large-system limit, where the numbers of transmit antennas, users, and selected users tend to infinity while their ratios are kept constant. The analysis under the assumptions of replica symmetry (RS) and 1-step replica symmetry breaking (1RSB) implies that optimal data-independent US provides nothing but the same performance as random US in the large-system limit, whereas data-independent US is capacity-achieving as only the number of users tends to infinity. It is shown that joint US-VP can provide a substantial reduction of the energy penalty in the large-system limit. Consequently, joint US-VP outperforms separate US-VP in terms of the achievable sum rate, which consists of a combination of vector precoding (VP) and data-independent US. In particular, data-dependent US can be applied to general modulation, and implemented with a greedy algorithm.
The robustness of system throughput with scheduling is a critical issue. In this paper, we analyze the sensitivity of multi-user scheduling performance to channel misreporting in systems with massive antennas. The main result is that for the round-ro bin scheduler combined with max-min power control, the channel magnitude misreporting is harmful to the scheduling performance and has a different impact from the purely physical layer analysis. Specifically, for the homogeneous users that have equal average signal-to-noise ratios (SNRs), underreporting is harmful, while overreporting is beneficial to others. In underreporting, the asymptotic rate loss on others is derived, which is tight when the number of antennas is huge. One interesting observation in our research is that the rate loss periodically increases and decreases as the number of misreporters grows. For the heterogeneous users that have various SNRs, both underreporting and overreporting can degrade the scheduler performance. We observe that strong misreporting changes the user grouping decision and hence greatly decreases some users rates regardless of others gaining rate improvements, while with carefully designed weak misreporting, the scheduling decision keeps fixed and the rate loss on others is shown to grow nearly linearly with the number of misreporters.
Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave (mmWave) massive multiple-input and multiple-output systems. To solve this problem, we exploit a le arned denoising-based approximate message passing (LDAMP) network. This neural network can learn channel structure and estimate channel from a large number of training data. Furthermore, we provide an analytical framework on the asymptotic performance of the channel estimator. Based on our analysis and simulation results, the LDAMP neural network significantly outperforms state-of-the-art compressed sensingbased algorithms even when the receiver is equipped with a small number of RF chains. Therefore, deep learning is a powerful tool for channel estimation in mmWave communications.
In this paper, we investigate the performance of cell-free massive MIMO systems with massive connectivity. With the generalized approximate message passing (GAMP) algorithm, we obtain the minimum mean-squared error (MMSE) estimate of the effective ch annel coefficients from all users to all access points (APs) in order to perform joint user activity detection and channel estimation. Subsequently, using the decoupling properties of MMSE estimation for large linear systems and state evolution equations of the GAMP algorithm, we obtain the variances of both the estimated channel coefficients and the corresponding channel estimation error. Finally, we study the achievable uplink rates with zero-forcing (ZF) detector at the central processing unit (CPU) of the cell-free massive MIMO system. With numerical results, we analyze the impact of the number of pilots used for joint activity detection and channel estimation, the number of APs, and signal-to-noise ratio (SNR) on the achievable rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا