ﻻ يوجد ملخص باللغة العربية
The high abundance of disk galaxies without a large central bulge challenges predictions of current hydrodynamic simulations of galaxy formation. We aim to shed light on the formation of these objects by studying the redshift and mass dependence of their 3D shape distribution in the COSMOS galaxy survey. This distribution is inferred from the observed distribution of 2D shapes, using a reconstruction method which we test using hydrodynamic simulations. We find a moderate bias for the inferred average disk circularity and relative thickness with respect to the disk radius, but a large bias on the dispersion of these quantities. Applying the 3D shape reconstruction method on COSMOS data, we find no significant dependence of the inferred 3D shape distribution on redshift. The relative disk thickness shows a significant mass dependence which can be accounted for by the scaling of disk radius with galaxy mass. We conclude that the shapes of disk dominated galaxies are overall not subject to disruptive merging or feedback events below redshift $z=1.0$. This favours a scenario where these disks form early and subsequently undergo a tranquil evolution in isolation. In addition, our study shows that the observed 2D shapes of disk dominated galaxies can be well fitted using an ellipsoidal model for the galaxy 3D morphology combined with a Gaussian model for the 3D axes ratio distribution, confirming findings from similar work reported in the literature. Such an approach allows to build realistic mock catalogs with intrinsic galaxy shapes that will be essential for the study of intrinsic galaxy alignment as a contaminant of weak lensing surveys.
To break the degeneracy among galactic stellar components, we extract kinematic structures using the framework described in Du et al. (2019, 2020). For example, the concept of stellar halos is generalized to weakly-rotating structures that are compos
We present a study of large-scale bars in the local Universe, based on a large sample of ~3692 galaxies, with -18.5 <= M_g < -22.0 mag and redshift 0.01 <= z < 0.03, drawn from the Sloan Digitized Sky Survey. Our sample includes many galaxies that ar
We have carried out a joint photometric and structural analysis of red sequence galaxies in four clusters at a mean redshift of z ~ 1.25 using optical and near-IR HST imaging reaching to at least 3 magnitudes fainter than $M^*$. As expected, the phot
We investigate the relationship between environment and galaxy evolution in the redshift range $0.5 < z < 1.0$. Galaxy overdensities are selected using a Friends-of-Friends algorithm, applied to deep photometric data in the Ultra-Deep Survey (UDS) fi
Based on a large sample of massive ($M_{*}geq 10^{10} M_{odot}$) compact galaxies at $1.0 < z < 3.0$ in five 3D-HST/CANDELS fields, we quantify the fractional abundance and comoving number density of massive compact galaxies as a function of redshift