ترغب بنشر مسار تعليمي؟ اضغط هنا

Significant Suppression of Star Formation in Radio-Quiet AGN Host Galaxies with Kiloparsec-Scale Radio Structures

83   0   0.0 ( 0 )
 نشر من قبل Krista Lynne Smith
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We conducted 22~GHz 1 JVLA imaging of 100 radio-quiet X-ray selected AGN from the Swift-BAT survey. We find AGN-driven kiloparsec-scale radio structures inconsistent with pure star formation in 11 AGN. The host galaxies of these AGN lie significantly below the star-forming main sequence, indicating suppressed star formation. While these radio structures tend to be physically small compared to the host galaxy, the global star formation rate of the host is affected. We evaluate the energetics of the radio structures interpreted first as immature radio jets, and then as consequences of an AGN-driven radiative outflow, and compare them to two criteria for successful feedback: the ability to remove the CO-derived molecular gas mass from the galaxy gravitational potential and the kinetic energy transfer to molecular clouds leading to $v_mathrm{cloud} > sigma_*$. In most cases, the jet interpretation is insufficient to provide the energy necessary to cause the star formation suppression. Conversely, the wind interpretation provides ample energy in all but one case. We conclude that it is more likely that the observed suppression of star formation in the global host galaxy is due to ISM interactions of a radiative outflow, rather than a small-scale radio jet.



قيم البحث

اقرأ أيضاً

There exist strong evidence supporting the co-evolution of central supermassive black holes and their host galaxies. It is however still unclear what the exact role of nuclear activity, in the form of accretion onto these supermassive black holes, in this co-evolution is. We use a rich multi-wavelength dataset available for the North Ecliptic Pole field, most notably surveyed by the AKARI satellite infrared telescope to study the host galaxy properties of AGN. In particular we are interested in investigating star-formation in the host galaxies of radio-AGN and the putative radio feedback mechanism, potentially responsible for the eventual quenching of star-formation. Using both broadband SED modeling and optical spectroscopy, we simultaneously study the nu- clear and host galaxy components of our sources, as a function of their radio luminosity, bolo- metric luminosity, and radio-loudness. Here we present preliminary results concerning the AGN content of the radio sources in this field, while offering tentative evidence that jets are inefficient star-formation quenchers, except in their most powerful state.
We examine the relationship between star formation and AGN activity by constructing matched samples of local ($0<z<0.6$) radio-loud and radio-quiet AGN in the $textit{Herschel}$-ATLAS fields. Radio-loud AGN are classified as high-excitation and low-e xcitation radio galaxies (HERGs, LERGs) using their emission lines and $textit{WISE}$ 22-$mu$m luminosity. AGN accretion and jet powers in these active galaxies are traced by [OIII] emission-line and radio luminosity, respectively. Star formation rates (SFRs) and specific star formation rates (SSFRs) were derived using $textit{Herschel}$ 250-$mu$m luminosity and stellar mass measurements from the SDSS$-$MPA-JHU catalogue. In the past, star formation studies of AGN have mostly focused on high-redshift sources to observe the thermal dust emission that peaks in the far-infrared, which limited the samples to powerful objects. However, with $textit{Herschel}$ we can expand this to low redshifts. Our stacking analyses show that SFRs and SSFRs of both radio-loud and radio-quiet AGN increase with increasing AGN power but that radio-loud AGN tend to have lower SFR. Additionally, radio-quiet AGN are found to have approximately an order of magnitude higher SSFRs than radio-loud AGN for a given level of AGN power. The difference between the star formation properties of radio-loud and -quiet AGN is also seen in samples matched in stellar mass.
We compare the optical properties of the host galaxies of radio-quiet (RQ) and radio-loud (RL) Type 2 active galactic nuclei (AGNs) to infer whether the jet production efficiency depends on the host properties or is determined just by intrinsic prope rties of the accretion flows. We carefully select galaxies from SDSS, FIRST, and NVSS catalogs. We confirm previous findings that the fraction of RL AGNs depends on the black-hole (BH) masses, and on the Eddington ratio. The comparison of the nature of the hosts of RL and RQ AGNs, therefore, requires pair-matching techniques. Matching in BH mass and Eddington ratio allows us to study the differences between galaxies hosting RL and RQ AGNs that have the same basic accretion parameters. We show that these two samples differ predominantly in the host-galaxy concentration index, morphological type (in the RL sample the frequency of elliptical galaxies becoming larger with increasing radio loudness), and nebular extinction (galaxies with highest radio loudness showing only low nebular extinction). Contrary to some previous studies, we find no significant difference between our radio-loud and radio-quiet samples regarding merger/interaction features.
Seyfert and LINER galaxies are known to exhibit compact radio emission on $sim$ 10 to 100 parsec scales, but larger Kiloparsec-Scale Radio structures (KSRs) often remain undetected in sub-arcsec high resolution observations. We investigate the preval ence and nature of KSRs in Seyfert and LINER galaxies using the 1.4 GHz VLA FIRST and NVSS observations. Our sample consists of 2651 sources detected in FIRST and of these 1737 sources also have NVSS counterparts. Considering the ratio of total to peak flux density ($theta$ $=$ ${rm (S_{rm int}/S_{rm peak})^{1/2}}$) as a parameter to infer the presence of extended radio emission we show that $geq$ 30$%$ of FIRST detected sources possess extended radio structures on scales larger than 1.0 kpc. The use of low-resolution NVSS observations help us to recover faint extended KSRs that are resolved out in FIRST observations and results in $geq$ 42.5$%$ KSR sources in FIRST-NVSS subsample. This fraction is only a lower limit owing to the combination of projection, resolution and sensitivity effects. Our study demonstrates that KSRs may be more common than previously thought and are found across all redshifts, luminosities and radio-loudness. The extranuclear radio luminosity of KSR sources is found to be positively correlated with the core radio luminosity as well as the [O~III] $lambda$5007{AA} line luminosity and this can be interpreted as KSRs being powered by AGN rather than star-formation. The distributions of the FIR-to-radio ratios and mid-IR colors of KSR sources are also consistent with their AGN origin. However, contribution from star-formation cannot be ruled out particularly in sources with low radio luminosities.
Radio observations allow us to identify a wide range of active galactic nuclei (AGN), which play a significant role in the evolution of galaxies. Amongst AGN at low radio-luminosities is the radio-quiet quasar (RQQ) population, but how they contribut e to the total radio emission is under debate, with previous studies arguing that it is predominantly through star formation. In this talk, SVW summarised the results of recent papers on RQQs, including the use of far-infrared data to disentangle the radio emission from the AGN and that from star formation. This provides evidence that black-hole accretion, instead, dominates the radio emission in RQQs. In addition, we find that this accretion-related emission is correlated with the optical luminosity of the quasar, whilst a weaker luminosity-dependence is evident for the radio emission connected with star formation. What remains unclear is the process by which this accretion-related emission is produced. Understanding this for RQQs will then allow us to investigate how this type of AGN influences its surroundings. Such studies have important implications for modelling AGN feedback, and for determining the accretion and star-formation histories of the Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا