ﻻ يوجد ملخص باللغة العربية
An important challenge in statistical analysis lies in controlling the bias of estimators due to the ever-increasing data size and model complexity. Approximate numerical methods and data features like censoring and misclassification often result in analytical and/or computational challenges when implementing standard estimators. As a consequence, consistent estimators may be difficult to obtain, especially in complex and/or high dimensional settings. In this paper, we study the properties of a general simulation-based estimation framework that allows to construct bias corrected consistent estimators. We show that the considered approach leads, under more general conditions, to stronger bias correction properties compared to alternative methods. Besides its bias correction advantages, the considered method can be used as a simple strategy to construct consistent estimators in settings where alternative methods may be challenging to apply. Moreover, the considered framework can be easily implemented and is computationally efficient. These theoretical results are highlighted with simulation studies of various commonly used models, including the negative binomial regression (with and without censoring) and the logistic regression (with and without misclassification errors). Additional numerical illustrations are provided in the supplementary materials.
We develop a Bayesian variable selection method, called SVEN, based on a hierarchical Gaussian linear model with priors placed on the regression coefficients as well as on the model space. Sparsity is achieved by using degenerate spike priors on inac
In this paper, we propose a cone projected power iteration algorithm to recover the first principal eigenvector from a noisy positive semidefinite matrix. When the true principal eigenvector is assumed to belong to a convex cone, the proposed algorit
While there is considerable work on change point analysis in univariate time series, more and more data being collected comes from high dimensional multivariate settings. This paper introduces the asymptotic concept of high dimensional efficiency whi
Functional Magnetic Resonance Imaging (fMRI) maps cerebral activation in response to stimuli but this activation is often difficult to detect, especially in low-signal contexts and single-subject studies. Accurate activation detection can be guided b
The problem of estimating ARMA models is computationally interesting due to the nonconcavity of the log-likelihood function. Recent results were based on the convex minimization. Joint model selection using penalization by a convex norm, e.g. the nuc