ترغب بنشر مسار تعليمي؟ اضغط هنا

Trapping, Shaping and Isolating of Ion Coulomb Crystals via State-selective Optical Potentials

104   0   0.0 ( 0 )
 نشر من قبل Pascal Weckesser
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent primarily on their charge-to-mass ratio $Q/m$. In contrast, storing ions within an optical dipole trap results in state-dependent confinement. Here we experimentally study optical dipole potentials for $^{138}mathrm{Ba}^+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm. We prepare the ions in either the $6mathrm{S}_{mathrm{1/2}}$ electronic ground or the $5mathrm{D}_{mathrm{3/2}}$/ $5mathrm{D}_{mathrm{5/2}}$ metastable excited state and probe the relative strength and polarity of the potential. On the one hand, we apply our findings to selectively remove ions from a Coulomb crystal, despite all ions sharing the same $Q/m$. On the other hand, we deterministically purify the trapping volume from parasitic ions in higher-energy orbits, resulting in reliable isolation of Coulomb crystals down to a single ion within a radio-frequency trap.

قيم البحث

اقرأ أيضاً

The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher dimensional systems. Here, we report on the trapping of multiple Barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform which is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nano-scale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.
Atoms trapped in the evanescent field around a nanofiber experience strong coupling to the light guided in the fiber mode. However, due to the intrinsically strong positional dependence of the coupling, thermal motion of the ensemble limits the use o f nanofiber trapped atoms for some quantum tasks. We investigate the thermal dynamics of such an ensemble by using short light pulses to make a spatially inhomogeneous population transfer between atomic states. As we monitor the wave packet of atoms created by this scheme, we find a damped oscillatory behavior which we attribute to sloshing and dispersion of the atoms. Oscillation frequencies range around 100 kHz, and motional dephasing between atoms happens on a timescale of 10 $mu$s. Comparison to Monte Carlo simulations of an ensemble of 1000 classical particles yields reasonable agreement for simulated ensemble temperatures between 25 $mu$K and 40 $mu$K.
Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled DC electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on DC electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains.
Trapped-ion optical clocks are capable of achieving systematic fractional frequency uncertainties of $10^{-18}$ and possibly below. However, the stability of current ion clocks is fundamentally limited by the weak signal of single-ion interrogation. We present an operational, scalable platform for extending clock spectroscopy to arrays of Coulomb crystals consisting of several tens of ions, while allowing systematic shifts as low as $10^{-19}$. Using a newly developed technique, we observe 3D excess micromotion amplitudes inside a Coulomb crystal with atomic spatial resolution and sub-nanometer amplitude uncertainties. We show that in ion Coulomb crystals of 400$mu$m and 2mm length, time dilation shifts of In${}^+$ ions due to micromotion can be close to $1times10^{-19}$ and below $10^{-18}$, respectively. In previous ion traps, excess micromotion would have dominated the uncertainty budget for spectroscopy of even a few ions. By minimizing its contribution and providing a means to quantify it, this work opens up the path to precision spectroscopy in many-body ion systems, enabling entanglement-enhanced ion clocks and providing a well-controlled, strongly coupled quantum system.
In this chapter we review the field of radio-frequency dressed atom trapping. We emphasise the role of adiabatic potentials and give simple, but generic models of electromagnetic fields that currently produce traps for atoms at microkelvin temperatur es and below. The paper aims to be didactic and starts with general descriptions of the essential ingredients of adiabaticity and magnetic resonance. As examples of adiabatic potentials we pay attention to radio-frequency dressing in both the quadrupole trap and the Ioffe-Pritchard trap. We include a description of the effect of different choices of radio-frequency polarisation and orientations or alignment. We describe how the adiabatic potentials, formed from radio-frequency fields, can themselves be probed and manipulated with additional radio-frequency fields including multi-photon-effects. We include a description of time-averaged adiabatic potentials. Practical issues for the construction of radio-frequency adiabatic potentials are addressed including noise, harmonics, and beyond rotating wave approximation effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا