ترغب بنشر مسار تعليمي؟ اضغط هنا

Node-Adaptive Regularization for Graph Signal Reconstruction

120   0   0.0 ( 0 )
 نشر من قبل Maosheng Yang
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

A critical task in graph signal processing is to estimate the true signal from noisy observations over a subset of nodes, also known as the reconstruction problem. In this paper, we propose a node-adaptive regularization for graph signal reconstruction, which surmounts the conventional Tikhonov regularization, giving rise to more degrees of freedom; hence, an improved performance. We formulate the node-adaptive graph signal denoising problem, study its bias-variance trade-off, and identify conditions under which a lower mean squared error and variance can be obtained with respect to Tikhonov regularization. Compared with existing approaches, the node-adaptive regularization enjoys more general priors on the local signal variation, which can be obtained by optimally designing the regularization weights based on Pronys method or semidefinite programming. As these approaches require additional prior knowledge, we also propose a minimax (worst-case) strategy to address instances where this extra information is unavailable. Numerical experiments with synthetic and real data corroborate the proposed regularization strategy for graph signal denoising and interpolation, and show its improved performance compared with competing alternatives.

قيم البحث

اقرأ أيضاً

78 - Jisheng Dai , An Liu , 2019
This study addresses the problem of discrete signal reconstruction from the perspective of sparse Bayesian learning (SBL). Generally, it is intractable to perform the Bayesian inference with the ideal discretization prior under the SBL framework. To overcome this challenge, we introduce a novel discretization enforcing prior to exploit the knowledge of the discrete nature of the signal-of-interest. By integrating the discretization enforcing prior into the SBL framework and applying the variational Bayesian inference (VBI) methodology, we devise an alternating update algorithm to jointly characterize the finite alphabet feature and reconstruct the unknown signal. When the measurement matrix is i.i.d. Gaussian per component, we further embed the generalized approximate message passing (GAMP) into the VBI-based method, so as to directly adopt the ideal prior and significantly reduce the computational burden. Simulation results demonstrate substantial performance improvement of the two proposed methods over existing schemes. Moreover, the GAMP-based variant outperforms the VBI-based method with an i.i.d. Gaussian measurement matrix but it fails to work for non i.i.d. Gaussian matrices.
301 - Wolfgang Erb 2019
For the interpolation of graph signals with generalized shifts of a graph basis function (GBF), we introduce the concept of positive definite functions on graphs. This concept merges kernel-based interpolation with spectral theory on graphs and can b e regarded as a graph analog of radial basis function interpolation in euclidean spaces or spherical basis functions. We provide several descriptions of positive definite functions on graphs, the most relevant one is a Bochner-type characterization in terms of positive Fourier coefficients. These descriptions allow us to design GBFs and to study GBF interpolation in more detail: we are able to characterize the native spaces of the interpolants, we provide explicit estimates for the interpolation error and obtain bounds for the numerical stability. As a final application, we show how GBF interpolation can be used to get quadrature formulas on graphs.
Graph signal processing (GSP) is an emerging field developed for analyzing signals defined on irregular spatial structures modeled as graphs. Given the considerable literature regarding the resilience of infrastructure networks using graph theory, it is not surprising that a number of applications of GSP can be found in the resilience domain. GSP techniques assume that the choice of graphical Fourier transform (GFT) imparts a particular spectral structure on the signal of interest. We assess a number of power distribution systems with respect to metrics of signal structure and identify several correlates to system properties and further demonstrate how these metrics relate to performance of some GSP techniques. We also discuss the feasibility of a data-driven approach that improves these metrics and apply it to a water distribution scenario. Overall, we find that many of the candidate systems analyzed are properly structured in the chosen GFT basis and amenable to GSP techniques, but identify considerable variability and nuance that merits future investigation.
Exponential is a basic signal form, and how to fast acquire this signal is one of the fundamental problems and frontiers in signal processing. To achieve this goal, partial data may be acquired but result in the severe artifacts in its spectrum, whic h is the Fourier transform of exponentials. Thus, reliable spectrum reconstruction is highly expected in the fast sampling in many applications, such as chemistry, biology, and medical imaging. In this work, we propose a deep learning method whose neural network structure is designed by unrolling the iterative process in the model-based state-of-the-art exponentials reconstruction method with low-rank Hankel matrix factorization. With the experiments on synthetic data and realistic biological magnetic resonance signals, we demonstrate that the new method yields much lower reconstruction errors and preserves the low-intensity signals much better.
Because of its self-regularizing nature and uncertainty estimation, the Bayesian approach has achieved excellent recovery performance across a wide range of sparse signal recovery applications. However, most methods are based on the real-value signal model, with the complex-value signal model rarely considered. Typically, the complex signal model is adopted so that phase information can be utilized. Therefore, it is non-trivial to develop Bayesian models for the complex-value signal model. Motivated by the adaptive least absolute shrinkage and selection operator (LASSO) and the sparse Bayesian learning (SBL) framework, a hierarchical model with adaptive Laplace priors is proposed for applications of complex sparse signal recovery in this paper. The proposed hierarchical Bayesian framework is easy to extend for the case of multiple measurement vectors. Moreover, the space alternating principle is integrated into the algorithm to avoid using the matrix inverse operation. In the experimental section of this work, the proposed algorithm is concerned with both complex Gaussian random dictionaries and directions of arrival (DOA) estimations. The experimental results show that the proposed algorithm offers better sparsity recovery performance than the state-of-the-art methods for different types of complex signals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا