ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the LOCC distinguishability of product states. We employ polygons to analyse orthogonal product states in any system to show that with LOCC protocols, to distinguish 7 orthogonal product states, one can exclude 4 states via a single copy. In bipartite systems, this result implies that N orthogonal product states are LOCC distinguishable if $left lceil frac {N}{4}right rceil$ copies are allowed, where $left lceil lright rceil$ for a real number $l$ means the smallest integer not less than $l$. In multipartite systems, this result implies that N orthogonal product states are LOCC distinguishable if $left lceil frac {N}{4}right rceil +1$ copies are allowed. We also give a theorem to show how many states can be excluded via a single copy if we are distinguishing n orthogonal product states by LOCC protocols in a bipartite system. Not like previous results, our result is a general result for any set of orthogonal product states in any system.
We study the local indistinguishability of mutually orthogonal product basis quantum states in the high-dimensional quantum system. In the quantum system of $mathbb{C}^dotimesmathbb{C}^d$, where $d$ is odd, Zhang emph{et al} have constructed $d^2$ or
The general conditions for the orthogonal product states of the multi-state systems to be used in quantum key distribution (QKD) are proposed, and a novel QKD scheme with orthogonal product states in the 3x3 Hilbert space is presented. We show that t
We revisit the problem of detection of entanglement of an unknown two-qubit state using minimal resources. Using weak values and just two copies of an arbitrary two-qubit state, we present a protocol where a post selection measurement in the computat
The hierarchy of nonlocality and entanglement in multipartite systems is one of the fundamental problems in quantum physics. Existing studies on this topic to date were limited to the entanglement classification according to the numbers of particles
We study thermal states of strongly interacting quantum spin chains and prove that those can be represented in terms of convex combinations of matrix product states. Apart from revealing new features of the entanglement structure of Gibbs states our