ترغب بنشر مسار تعليمي؟ اضغط هنا

A Real Triplet-Singlet Extended Standard Model: Dark Matter and Collider Phenomenology

257   0   0.0 ( 0 )
 نشر من قبل Leon Friedrich
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the collider and dark matter phenomenology of the Standard Model extended by a hypercharge-zero SU(2) triplet scalar and gauge singlet scalar. In particular, we study the scenario where the singlet and triplet are both charged under a single $mathbb{Z}_2$ symmetry. We find that such an extension is capable of generating the observed dark matter density, while also modifying the collider phenomenology such that the lower bound on the mass of the triplet is smaller than in minimal triplet scalar extensions to the Standard Model. A high triplet mass is in tension with the parameter space that leads to novel electroweak phase transitions in the early universe. Therefore, the lower triplet masses that are permitted in this extended model are of particular importance for the prospects of successful electroweak baryogenesis and the generation of gravitational waves from early universe phase transitions.



قيم البحث

اقرأ أيضاً

It is well known that for the pure standard model triplet fermionic WIMP-type dark matter (DM), the relic density is satisfied around 2 TeV. For such a heavy mass particle, the production cross-section at 13 TeV run of LHC will be very small. Extendi ng the model further with a singlet fermion and a triplet scalar, DM relic density can be satisfied for even much lower masses. The lower mass DM can be copiously produced at LHC and hence the model can be tested at collider. For the present model we have studied the multi jet ($geq 2,j$) + missing energy ($cancel{E}_{T}$) signal and show that this can be detected in the near future of the LHC 13 TeV run. We also predict that the present model is testable by the earth based DM direct detection experiments like Xenon-1T and in future by Darwin.
Gauge singlet extensions of the Standard Model (SM) scalar sector may help remedy its theoretical and phenomenological shortcomings while solving outstanding problems in cosmology. Depending on the symmetries of the scalar potential, such extensions may provide a viable candidate for the observed relic density of cold dark matter or a strong first order electroweak phase transition needed for electroweak baryogenesis. Using the simplest extension of the SM scalar sector with one real singlet field, we analyze the generic implications of a singlet-extended scalar sector for Higgs boson phenomenology at the Large Hadron Collider (LHC). We consider two broad scenarios: one in which the neutral SM Higgs and singlet mix and the other in which no mixing occurs and the singlet can be a dark matter particle. For the first scenario, we analyze constraints from electroweak precision observables and their implications for LHC Higgs phenomenology. For models in which the singlet is stable, we determine the conditions under which it can yield the observed relic density, compute the cross sections for direct detection in recoil experiments, and discuss the corresponding signatures at the LHC.
We study discovery prospects for a real triplet extension of the Standard Model scalar sector at the Large Hadron Collider (LHC) and a possible future 100 TeV $pp$ collider. We focus on the scenario in which the neutral triplet scalar is stable and c ontributes to the dark matter relic density. When produced in $pp$ collisions, the charged triplet scalar decays to the neutral component plus a soft pion or soft lepton pair, yielding a disappearing charged track in the detector. We recast current 13TeV LHC searches for disappearing tracks, and find that the LHC presently excludes a real triplet scalar lighter than 248 (275) GeV, for a mass splitting of 172 (160) MeV with $mathcal{L}=rm36,$fb$^{-1}$. The reach can extend to 497 (520) GeV with the collection of $3000,$fb$^{-1}$. We extrapolate the 13 TeV analysis to a prospective 100 TeV $pp$ collider, and find that a $sim3$ TeV triplet scalar could be discoverable with $mathcal{L}=30$ ab$^{-1}$, depending on the degree to which pile up effects are under control. We also investigate the dark matter candidate in our model and corresponding present and prospective constraints from dark matter direct detection. We find that currently XENON1T can exclude a real triplet dark matter lighter than $sim3$ TeV for a Higgs portal coupling of order one or larger, and the future XENON20T will cover almost the entire dark matter viable parameter space except for vanishingly small portal coupling.
108 - A. Arhrib , M. Maniatis 2018
We revisit a Dark Matter model with an extension of the Standard Model with two real singlets $chi$ and $eta$ obeying a $Z_2 otimes Z_2$ symmetry, where $Z_2$ is broken spontaneously. While $chi$ serves as a stable Dark Matter candidate providing the relic density, the real $eta$ field plays the role of a light mediator. We study the viability of this model with respect to Dark Matter self-interactions which may explain the density profiles observed in dwarf galaxies up to scales of the size of our Milky Way. Moreover, the Standard Model-like Higgs boson of the model has a tiny mixing with the mediator field and appears to be consistent with current LHC data. In this rather minimal extension of the Standard Model the mediator $eta$ decays naturally into Majorana neutrinos neither disturbing standard big bang nucleosynthesis nor cosmic microwave background observations.
We study the dark matter phenomenology of scotogenic frameworks through the rather illustrative model T1-2A extending the Standard Model by scalar and fermionic singlets and doublets. Such a setup is phenomenologically attractive since it provides th e radiative generation of neutrino masses, while also including viable candidates for cold dark matter. We employ a Markov Chain Monte Carlo algorithm to explore the associated parameter space in view of numerous constraints stemming from the Higgs mass, the neutrino sector, dark matter, and lepton-flavour violating processes. After a general discussion of the results, we focus on the case of fermionic dark matter, which remains rather uncovered in the literature so far. We discuss the associated phenomenology and show that in this particular case a rather specific mass spectrum is expected with fermion masses just above 1 TeV. Our study may serve as a guideline for future collider studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا