ترغب بنشر مسار تعليمي؟ اضغط هنا

Fe-vacancy ordered Fe4Se5: The insulating parent phase of FeSe superconductor

110   0   0.0 ( 0 )
 نشر من قبل Keng Yu Yeh
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have carried out a detailed study to investigate the existence of an insulating parent phase for FeSe superconductor. The insulating Fe4Se5 with specific Fe-vacancy order shows a 3D-Mott variable range hopping behavior with a Verwey-like electronic correlation at around 45 K. The application of the RTA process at 450 celcius degree results in the destruction of Fe-vacancy order and induces more electron carriers by increasing the Fe3+ valence state. Superconductivity emerges with Tc ~ 8K without changing the chemical stoichiometry of the sample after the RTA process by resulting in the addition of extra carriers in favor of superconductivity.

قيم البحث

اقرأ أيضاً

We studied the electrical transport on $beta$-Fe$_{4+delta}$Se$_{5}$ single-crystal nanowires, exhibiting $sqrt{5}timessqrt{5}$ Fe-vacancy order and mixed valence of Fe. We observed a first-order metal-insulator transition of the transition temperatu re at $sim$28~K at zero magnetic field. The dielectric relaxation reveals that the transition is related to an energy gap expansion of $sim$12~meV, involving the charge-orbital ordering. At nearly 28~K, colossal positive magnetoresistance emerges, resulting from the magnetic-field dependent shift of the transition temperature. Through the transition, the magnetotransport behavior transits from two-dimension-like to one-dimension-like conduction. The transition temperature demonstrates anisotropy with the $c$-axis as the preferred orientation in magnetic fields, suggesting the spin-orbital coupling. Our findings demonstrate the novel magnetoresistive transition intimating a topological transition in the Fe-vacancy-ordered $beta$-Fe$_{4+delta}$Se$_{5}$ nanowires. The results provide valuable information to better understand the orbital nature and the emergence of superconductivity in FeSe-based materials.
We investigate the origin of exoticity in Fe-based systems via studying the Fermiology of CaFe2As2 employing Angle Resolved Photoemission spectroscopy (ARPES). While the Fermi surfaces (FSs) at 200 K and 31 K are observed to exhibit two dimensional ( 2D) and three dimensional (3D) topology, respectively, the FSs at intermediate temperatures reveal emergence of the 3D topology at much lower temperature than the structural & magnetic phase transition temperature (170 K, for the sample under scrutiny). This leads to the conclusion that the evolution of FS topology is not directly driven by the structural transition. In addition, we discover the existence in ambient conditions of energy bands related to the collapsed tetragonal (cT) phase. These bands are distinctly resolved in the high-photon energy spectra exhibiting strong Fe 3d character. They gradually move to higher binding energies due to thermal compression with cooling, leading to the emergence of 3D topology in the Fermi surface. These results reveal the so-far hidden existence of a cT phase in ambient conditions, which is argued to lead to quantum fluctuations responsible for the exotic electronic properties in Fe-pnictide superconductors.
98 - Y. Fang , D. H. Xie , W. Zhang 2015
Various Fe-vacancy orders have been reported in tetragonal Fe1-xSe single crystals and nanowires/nanosheets, which are similar to those found in alkali metal intercalated A1-xFe2-ySe2 superconductors. Here we report the in-situ angle-resolved photoem ission spectroscopy study of Fe-vacancy disordered and ordered phases in FeSe multi-layer thin films grown by molecular beam epitaxy. Low temperature annealed FeSe films are identified to be Fe-vacancy disordered phase and electron doped. Further long-time low temperature anneal can change the Fe-vacancy disordered phase to ordered phase, which is found to be semiconductor/insulator with (root 5) x (root 5) superstructure and can be reversely changed to disordered phase with high temperature anneal. Our results reveal that the disorder-order transition in FeSe thin films can be simply tuned by vacuum anneal and the (root 5) x (root 5) Fe-vacancy ordered phase is more likely the parent phase of FeSe.
Using angle resolved photoemission it is shown that the low lying electronic states of the iron pnictide parent compound EuFe$_2$As$_2$ are strongly modified in the magnetically ordered, low temperature, orthorhombic state compared to the tetragonal, paramagnetic case above the spin density wave transition temperature. Back-folded bands, reflected in the orthorhombic/ anti-ferromagnetic Brillouin zone boundary hybridize strongly with the non-folded states, leading to the opening of energy gaps. As a direct consequence, the large Fermi surfaces of the tetragonal phase fragment, the low temperature Fermi surface being comprised of small droplets, built up of electron and hole-like sections. These high resolution ARPES data are therefore in keeping with quantum oscillation and optical data from other undoped pnictide parent compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا