ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the information content of maximum ranked set sampling procedure with unequal samples (MRSSU) in terms of Tsallis entropy which is a nonadditive generalization of Shannon entropy. We obtain several results of Tsallis entropy including bounds, monotonic properties, stochastic orders, and sharp bounds under some assumptions. We also compare the uncertainty and information content of MRSSU with its counterpart in the simple random sampling (SRS) data. Finally, we develop some characterization results in terms of cumulative Tsallis entropy and residual Tsallis entropy of MRSSU and SRS data.
We prove that any implementation of pivotal sampling is more efficient than multinomial sampling. This property entails the weak consistency of the Horvitz-Thompson estimator and the existence of a conservative variance estimator. A small simulation study supports our findings.
We determine a general link between two different solutions of the MaxEnt variational problem, namely, the ones that correspond to using either Shannons or Tsallis entropies in the concomitant variational problem. It is shown that the two variations
We consider the problem of choosing the best of $n$ samples, out of a large random pool, when the sampling of each member is associated with a certain cost. The quality (worth) of the best sample clearly increases with $n$, but so do the sampling cos
Historically, to bound the mean for small sample sizes, practitioners have had to choose between using methods with unrealistic assumptions about the unknown distribution (e.g., Gaussianity) and methods like Hoeffdings inequality that use weaker assu
Estimating the matrix of connections probabilities is one of the key questions when studying sparse networks. In this work, we consider networks generated under the sparse graphon model and the in-homogeneous random graph model with missing observati