ترغب بنشر مسار تعليمي؟ اضغط هنا

Matrix-Analytic Methods for the analysis of Stochastic Fluid-Fluid Models

158   0   0.0 ( 0 )
 نشر من قبل Zbigniew Palmowski
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic fluid-fluid models (SFFMs) offer powerful modeling ability for a wide range of real-life systems of significance. The existing theoretical framework for this class of models is in terms of operator-analytic methods. For the first time, we establish matrix-analytic methods for the efficient analysis of SFFMs. We illustrate the theory with numerical examples.



قيم البحث

اقرأ أيضاً

We consider a stochastic fluid queue served by a constant rate server and driven by a process which is the local time of a certain Markov process. Such a stochastic system can be used as a model in a priority service system, especially when the time scales involved are fast. The input (local time) in our model is always singular with respect to the Lebesgue measure which in many applications is ``close to reality. We first discuss how to rigorously construct the (necessarily) unique stationary version of the system under some natural stability conditions. We then consider the distribution of performance steady-state characteristics, namely, the buffer content, the idle period and the busy period. These derivations are much based on the fact that the inverse of the local time of a Markov process is a Levy process (a subordinator) hence making the theory of Levy processes applicable. Another important ingredient in our approach is the Palm calculus coming from the point process point of view.
131 - Jiheng Zhang 2009
We study many-server queues with abandonment in which customers have general service and patience time distributions. The dynamics of the system are modeled using measure- valued processes, to keep track of the residual service and patience times of each customer. Deterministic fluid models are established to provide first-order approximation for this model. The fluid model solution, which is proved to uniquely exists, serves as the fluid limit of the many-server queue, as the number of servers becomes large. Based on the fluid model solution, first-order approximations for various performance quantities are proposed.
We consider a linear stochastic fluid network under Markov modulation, with a focus on the probability that the joint storage level attains a value in a rare set at a given point in time. The main objective is to develop efficient importance sampling algorithms with provable performance guarantees. For linear stochastic fluid networks without modulation, we prove that the number of runs needed (so as to obtain an estimate with a given precision) increases polynomially (whereas the probability under consideration decays essentially exponentially); for networks operating in the slow modulation regime, our algorithm is asymptotically efficient. Our techniques are in the tradition of the rare-event simulation procedures that were developed for the sample-mean of i.i.d. one-dimensional light-tailed random variables, and intensively use the idea of exponential twisting. In passing, we also point out how to set up a recursion to evaluate the (transient and stationary) moments of the joint storage level in Markov-modulated linear stochastic fluid networks.
Stochastic volatility models based on Gaussian processes, like fractional Brownian motion, are able to reproduce important stylized facts of financial markets such as rich autocorrelation structures, persistence and roughness of sample paths. This is made possible by virtue of the flexibility introduced in the choice of the covariance function of the Gaussian process. The price to pay is that, in general, such models are no longer Markovian nor semimartingales, which limits their practical use. We derive, in two different ways, an explicit analytic expression for the joint characteristic function of the log-price and its integrated variance in general Gaussian stochastic volatility models. Such analytic expression can be approximated by closed form matrix expressions. This opens the door to fast approximation of the joint density and pricing of derivatives on both the stock and its realized variance using Fourier inversion techniques. In the context of rough volatility modeling, our results apply to the (rough) fractional Stein--Stein model and provide the first analytic formulae for option pricing known to date, generalizing that of Stein--Stein, Sch{o}bel-Zhu and a special case of Heston.
Fluid models have become an important tool for the study of many-server queues with general service and patience time distributions. The equilibrium state of a fluid model has been revealed by Whitt (2006) and shown to yield reasonable approximations to the steady state of the original stochastic systems. However, it remains an open question whether the solution to a fluid model converges to the equilibrium state and under what condition. We show in this paper that the convergence holds under a mild condition. Our method builds on the framework of measure-valued processes developed in Zhang (2013), which keeps track of the remaining patience and service times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا