ﻻ يوجد ملخص باللغة العربية
Evaluating higher-order functional programs through abstract machines inspired by the geometry of the interaction is known to induce $textit{space}$ efficiencies, the price being $textit{time}$ performances often poorer than those obtainable with traditional, environment-based, abstract machines. Although families of lambda-terms for which the former is exponentially less efficient than the latter do exist, it is currently unknown how emph{general} this phenomenon is, and how far the inefficiencies can go, in the worst case. We answer these questions formulating four different well-known abstract machines inside a common definitional framework, this way being able to give sharp results about the relative time efficiencies. We also prove that non-idempotent intersection type theories are able to precisely reflect the time performances of the interactive abstract machine, this way showing that its time-inefficiency ultimately descends from the presence of higher-order types.
This volume contains the proceedings of ICE20, the 13th Interaction and Concurrency Experience, which was held online on the 19th of June 2020, as a satellite event of DisCoTec20. The ICE workshop series features a distinguishing review and selection
The original paper on Mixed Sessions introduce the side A of the tape: there is an encoding of classical sessions into mixed sessions. Here we present side B: there is a translation of (a subset of) mixed sessions into classical session types. We pro
Single-pass instruction sequences under execution are considered to produce behaviours to be controlled by some execution environment. Threads as considered in thread algebra model such behaviours: upon each action performed by a thread, a reply from
The possibility of translating logic programs into functional ones has long been a subject of investigation. Common to the many approaches is that the original logic program, in order to be translated, needs to be well-moded and this has led to the c
In this article, we give an overview of our project on higher-order program verification based on HFL (higher-order fixpoint logic) model checking. After a brief introduction to HFL, we explain how it can be applied to program verification, and summarize the current status of the project.