ﻻ يوجد ملخص باللغة العربية
We study the fate of an impurity in a two-component, non-interacting Fermi gas under a non- Hermitian spin-orbit coupling (SOC) which is generated by dissipative Raman lasers. While SOC mixes the two spin species in the Fermi gas thus modifies the single-particle dispersions, we consider the case where the impurity only interacts with one of the spin species. As a result, spectral properties of the impurity constitute an ideal probe to the dissipative Fermi gas in the background. In particular, we show that dissipation destabilizes polarons in favor of molecular formation, consistent with previous few-body studies. The dissipative nature of the Fermi gas further leads to broadened peaks in the inverse radio-frequency spectra for both the attractive and repulsive polaron branches, which could serve as signals for experimental observation. Our results provides an exemplary scenario where the interplay of non-Hermiticity and interaction can be probed.
In this work, we study the BCS-BEC crossover and quantum phase transition in a Fermi gas under Rashba spin-orbit coupling close to a Feshbach resonance. By adopting a two-channel model, we take into account of the closed channel molecules, and show t
The realization of spin-orbit coupling (SOC) in ultracold atoms has triggered an intensive exploring of topological superfluids in the degenerate Fermi gases based on mean-field theory, which has not yet been reported in experiments. Here, we demonst
We study the phase diagram in a two-dimensional Fermi gas with the synthetic spin-orbit coupling that has recently been realized experimentally. In particular, we characterize in detail the properties and the stability region of the unconventional Fu
We realize the dynamical 1D spin-orbit-coupling (SOC) of a Bose-Einstein condensate confined within an optical cavity. The SOC emerges through spin-correlated momentum impulses delivered to the atoms via Raman transitions. These are effected by class
We investigate the superfluidity of attractive Fermi gas in a square optical lattice with spin-orbit coupling (SOC). We show that the system displays a variety of new filling-dependent features. At half filling, a quantum phase transition from a semi