ﻻ يوجد ملخص باللغة العربية
Galaxy clusters are widely used to constrain cosmological parameters through their properties, such as masses, luminosity and temperature distributions. One should take into account all kind of biases that could affect these analyses in order to obtain reliable constraints. In this work, we study the difference in the properties of clusters residing in different large scale environments, defined by their position within or outside of voids, and the density of their surrounding space. We use both observational and simulation cluster and void catalogues, i.e. XCS and redMaPPer clusters, BOSS voids, and Magneticum simulations. We devise two different environmental proxies for the clusters and study their redshift, richness, mass, X-ray luminosity and temperature distributions as well as some properties of their galaxy populations. We use the Kolmogorov-Smirnov two-sample test to discover that richer and more massive clusters are more prevalent in overdense regions and outside of voids. We also find that clusters of matched richness and mass in overdense regions and outside voids tend to have higher X-ray luminosities and temperatures. These differences could have important implications for precision cosmology with clusters of galaxies, since cluster mass calibrations can vary with environment.
We use SDSS data to investigate the scaling relations of 127 NoSOCS and 56 CIRS galaxy clusters at low redshift ($z le 0.10$). We show that richness and both optical and X-ray luminosities are reliable mass proxies. The scatter in mass at fixed obser
We study the stellar mass distribution for galaxies in 160 X-ray detected groups of 10^13<Log(M_200/M_sun)<2x10^14 and compare it with that of galaxies in the field, to investigate the action of environment on the build up of the stellar mass. We hig
We present the X-ray properties and scaling relations of a large sample of clusters extracted from the Marenostrum MUltidark SImulations of galaxy Clusters (MUSIC) dataset. We focus on a sub-sample of 179 clusters at redshift z~0.11, with 3.2e14M_sun
Galaxy clusters have their unique advantages for cosmology. Here we collect a new sample of 10 lensing galaxy clusters with X-ray observations to constrain cosmological parameters.The redshifts of lensing clusters lie between 0.1 and 0.6, and the red
We used optical imaging and spectroscopic data to derive substructure estimates for local Universe ($z < 0.11$) galaxy clusters from two different samples. The first was selected through the Sunyaev-Zeldovich (SZ) effect by the Planck satellite and t