ترغب بنشر مسار تعليمي؟ اضغط هنا

Coronal Line Forest AGN I: physical properties of the emission-line regions

122   0   0.0 ( 0 )
 نشر من قبل Fernando Custodio Cerqueira-Campos
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coronal-Line Forest Active Galactic Nuclei (CLiF AGN) are characterized by strong high-ionization lines, which contrast to what is found in most AGNs. Here, we carry out a multiwavelength analysis aimed at understanding the physical processes in the Narrow Line Region (NLR) of these objects and unveiling if they are indeed a special class of AGN. By comparing coronal emission-line ratios we conclude that there are no differences between CLiF and non-CLiF AGNs. We derive physical conditions of the narrow line region (NLR) gas and found electron densities in the range $3.6times$10$^{2}$ - $1.7times$10$^{4}$ cm$^{-3}$ and temperatures of $3.7times$10$^{3}$ - $6.3times$10$^{4}$ K, suggesting that the ionization mechanism is associated primarily with photoionization by the AGN. We suggest a NLR dominated by matter-bounded clouds to explain the high-ionization line spectrum observed. The mass of the central black hole, derived from the stellar velocity dispersion show that most of the objects have values in the interval 10$^{7-8}$~M$odot$. Our results imply that CLiF AGN is not a separate category of AGNs. In all optical/near-infrared emission-line properties analyzed, they represent an extension to the low/high ends of the distribution within the AGN class.



قيم البحث

اقرأ أيضاً

As part of an extensive study of the physical properties of active galactic nuclei (AGN) we report high spatial resolution near-IR integral-field spectroscopy of the narrow-line region (NLR) and coronal-line region (CLR) of seven Seyfert galaxies. Th ese measurements elucidate for the first time the two-dimensional spatial distribution and kinematics of the recombination line Br{gamma} and high-ionization lines [Sivi], [Alix] and [Caviii] on scales <300 pc from the AGN. The observations reveal kinematic signatures of rotation and outflow in the NLR and CLR. The spatially resolved kinematics can be modeled as a combination of an outflow bicone and a rotating disk coincident with the molecular gas. High-excitation emission is seen in both components, suggesting it is leaking out of a clumpy torus. While NGC 1068 (Seyfert 2) is viewed nearly edge-on, intermediate-type Seyferts are viewed at intermediate angles, consistent with unified schemes. A correlation between the outflow velocity and the molecular gas mass in r<30 pc indicates that the accumulation of gas around the AGN increases the collimation and velocity of the outflow. The outflow rate is 2-3 orders of magnitude greater than the accretion rate, implying that the outflow is mass-loaded by the surrounding interstellar medium (ISM). In half of the observed AGN the kinetic power of the outflow is of the order of the power required by two-stage feedback models to be thermally coupled to the ISM and match the M-{sigma}* relation. In these objects the radio jet is clearly interacting with the ISM, indicative of a link between jet power and outflow power.
We use the photoionisation code Cloudy to determine both the location and the kinematics of the optical forbidden, high ionisation line (hereafter, FHIL) emitting gas in the narrow line Seyfert 1 galaxy Ark 564. The results of our models are compared with the observed properties of these emission lines to produce a physical model that is used to explain both the kinematics and the source of this gas. The main features of this model are that the FHIL emitting gas is launched from the putative dusty torus and is quickly accelerated to its terminal velocity of a few hundred km/s. Iron-carrying grains are destroyed during this initial acceleration. This velocity is maintained by a balance between radiative forces and gravity in this super-Eddington source. Eventually the outflow is slowed at large radii by the gravitational forces of and interactions with the host galaxy. In this model, FHIL emission traces the transition between the AGN and bulge zones of influence.
We compare the physical and morphological properties of z ~ 2 Lyman-alpha emitting galaxies (LAEs) identified in the HETDEX Pilot Survey and narrow band studies with those of z ~ 2 optical emission line galaxies (oELGs) identified via HST WFC3 infrar ed grism spectroscopy. Both sets of galaxies extend over the same range in stellar mass (7.5 < logM < 10.5), size (0.5 < R < 3.0 kpc), and star-formation rate (~1 < SFR < 100). Remarkably, a comparison of the most commonly used physical and morphological parameters -- stellar mass, half-light radius, UV slope, star formation rate, ellipticity, nearest neighbor distance, star formation surface density, specific star formation rate, [O III] luminosity, and [O III] equivalent width -- reveals no statistically significant differences between the populations. This suggests that the processes and conditions which regulate the escape of Ly-alpha from a z ~ 2 star-forming galaxy do not depend on these quantities. In particular, the lack of dependence on the UV slope suggests that Ly-alpha emission is not being significantly modulated by diffuse dust in the interstellar medium. We develop a simple model of Ly-alpha emission that connects LAEs to all high-redshift star forming galaxies where the escape of Ly-alpha depends on the sightline through the galaxy. Using this model, we find that mean solid angle for Ly-alpha escape is 2.4+/-0.8 steradians; this value is consistent with those calculated from other studies.
We investigate a long-term (26 years, from 1987 to 2013) variability in the broad spectral line properties of the radio galaxy Arp 102B, an active galaxy with broad double-peaked emission lines. We use observations presented in Paper I (Shapovalova e t al. 2013) in the period from 1987 to 2011, and a new set of observations performed in 2012--2013. To explore the BLR geometry, and clarify some contradictions about the nature of the BLR in Arp 102B we explore variations in the H$alpha$ and H$beta$ line parameters during the monitored period. We fit the broad lines with three broad Gaussian functions finding the positions and intensities of the blue and red peaks in H$alpha$ and H$beta$. Additionally we fit averaged line profiles with the disc model. We find that the broad line profiles are double-peaked and have not been changed significantly in shapes, beside an additional small peak that, from time to time can be seen in the blue part of the H$alpha$ line. The positions of the blue and red peaks { have not changed significantly during the monitored period. The H$beta$ line is broader than H$alpha$ line in the monitored period. The disc model is able to reproduce the H$beta$ and H$alpha$ broad line profiles, however, observed variability in the line parameters are not in a good agreement with the emission disc hypothesis. It seems that the BLR of Arp 102B has a disc-like geometry, but the role of an outflow can also play an important role in observed variation of the broad line properties.
98 - M. Chatzikos 2014
We announce a new facility in the spectral code CLOUDY that enables tracking the evolution of a cooling parcel of gas with time. For gas cooling from temperatures relevant to galaxy clusters, earlier calculations estimated the [Fe XIV] {lambda}5303 / [Fe X] {lambda}6375 luminosity ratio, a critical diagnostic of a cooling plasma, to slightly less than unity. By contrast, our calculations predict a ratio ~3. We revisit recent optical coronal line observations along the X-ray cool arc around NGC 4696 by Canning et al. (2011), which detected [Fe X] {lambda}6375, but not [Fe XIV] {lambda}5303. We show that these observations are not consistent with predictions of cooling flow models. Differential extinction could in principle account for the observations, but it requires extinction levels (A_V > 3.625) incompatible with previous observations. The non-detection of [Fe XIV] implies a temperature ceiling of 2.1 million K. Assuming cylindrical geometry and transonic turbulent pressure support, we estimate the gas mass at ~1 million solar masses. The coronal gas is cooling isochorically. We propose that the coronal gas has not condensed out of the intracluster medium, but instead is the conductive or mixing interface between the X-ray plume and the optical filaments. We present a number of emission lines that may be pursued to test this hypothesis and constrain the amount of intermediate temperature gas in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا