ترغب بنشر مسار تعليمي؟ اضغط هنا

Tightly coupled morpho-kinematic evolution for massive star-forming and quiescent galaxies across 7 Gyr of cosmic time

69   0   0.0 ( 0 )
 نشر من قبل Anna De Graaff
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the Fundamental Plane (FP) to measure the redshift evolution of the dynamical mass-to-light ratio ($M_{mathrm{dyn}}/L$) and the dynamical-to-stellar mass ratio ($M_{mathrm{dyn}}/M_*$). Although conventionally used to study the properties of early-type galaxies, we here obtain stellar kinematic measurements from the Large Early Galaxy Astrophysics Census (LEGA-C) Survey for a sample of $sim1400$ massive ($log( M_*/M_odot) >10.5$) galaxies at $0.6<z<1.0$ that span a wide range in star formation activity. In line with previous studies, we find a strong evolution in $M_{mathrm{dyn}}/L_g$ with redshift. In contrast, we find only a weak dependence of the mean value of $M_{mathrm{dyn}}/M_*$ on the specific star formation rate, and a redshift evolution that likely is explained by systematics. Therefore, we demonstrate that star-forming and quiescent galaxies lie on the same, stable mass FP across $0<z<1$, and that the decrease in $M_{mathrm{dyn}}/L_g$ toward high redshift can be attributed entirely to evolution of the stellar populations. Moreover, we show that the growth of galaxies in size and mass is constrained to occur within the mass FP. Our results imply either minimal structural evolution in massive galaxies since $zsim1$, or a tight coupling in the evolution of their morphological and dynamical properties, and establish the mass FP as a tool for studying galaxy evolution with low impact from progenitor bias.

قيم البحث

اقرأ أيضاً

Over the past decade increasingly robust estimates of the dense molecular gas content in galaxy populations between redshift 0 and the peak of cosmic galaxy/star formation from redshift 1-3 have become available. This rapid progress has been possible due to the advent of powerful ground-based, and space telescopes for combined study of several millimeter to far-IR, line or continuum tracers of the molecular gas and dust components. The main conclusions of this review are: 1. Star forming galaxies contained much more molecular gas at earlier cosmic epochs than at the present time. 2. The galaxy integrated depletion time scale for converting the gas into stars depends primarily on z or Hubble time, and at a given z, on the vertical location of a galaxy along the star-formation rate versus stellar mass main-sequence (MS) correlation. 3. Global rates of galaxy gas accretion primarily control the evolution of the cold molecular gas content and star formation rates of the dominant MS galaxy population, which in turn vary with the cosmological expansion. A second key driver may be global disk fragmentation in high-z, gas rich galaxies, which ties local free-fall time scales to galactic orbital times, and leads to rapid radial matter transport and bulge growth. Third, the low star formation efficiency inside molecular clouds is plausibly set by super-sonic streaming motions, and internal turbulence, which in turn may be driven by conversion of gravitational energy at high-z, and/or by local feedback from massive stars at low-z. 4. A simple gas regulator model is remarkably successful in predicting the combined evolution of molecular gas fractions, star formation rates, galactic winds, and gas phase metallicities.
Two decades of effort have been poured into both single-dish and interferometric millimeter-wave surveys of the sky to infer the volume density of dusty star-forming galaxies (DSFGs, with SFR>100M$_odot$ yr$^{-1}$) over cosmic time. Though obscured g alaxies dominate cosmic star-formation near its peak at $zsim2$, the contribution of such heavily obscured galaxies to cosmic star-formation is unknown beyond $zsim2.5$ in contrast to the well-studied population of Lyman-break galaxies (LBGs) studied through deep, space- and ground-based pencil beam surveys in the near-infrared. Unlocking the volume density of DSFGs beyond $z>3$, particularly within the first 1 Gyr after the Big Bang is critical to resolving key open questions about early Universe galaxy formation: (1) What is the integrated star-formation rate density of the Universe in the first few Gyr and how is it distributed among low-mass galaxies (e.g. Lyman-break galaxies) and high-mass galaxies (e.g. DSFGs and quasar host galaxies)? (2) How and where do the first massive galaxies assemble? (3) What can the most extreme DSFGs teach us about the mechanisms of dust production (e.g. supernovae, AGB stars, grain growth in the ISM) <1 Gyr after the Big Bang? We summarize the types of observations needed in the next decade to address these questions.
For the first time, we present the size evolution of a mass-complete (log(M*/Msol)>10) sample of star-forming galaxies over redshifts z=1-7, selected from the FourStar Galaxy Evolution Survey (ZFOURGE). Observed H-band sizes are measured from the Cos mic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) Hubble Space Telescope (HST)/F160W imaging. Distributions of individual galaxy masses and sizes illustrate that a clear mass-size relation exists up to z~7. At z~7, we find that the average galaxy size from the mass-size relation is more compact at a fixed mass of log(M*/Msol)=10.1, with r_1/2,maj=1.02+/-0.29 kpc, than at lower redshifts. This is consistent with our results from stacking the same CANDELS HST/F160W imaging, when we correct for galaxy position angle alignment. We find that the size evolution of star-forming galaxies is well fit by a power law of the form r_e = 7.07(1 + z)^-0.89 kpc, which is consistent with previous works for normal star-formers at 1<z<4. In order to compare our slope with those derived Lyman break galaxy studies, we correct for different IMFs and methodology and find a slope of -0.97+/-0.02, which is shallower than that reported for the evolution of Lyman break galaxies at z>4 (r_epropto(1 +z)^-1.2+/-0.06). Therefore, we conclude the Lyman break galaxies likely represent a subset of highly star-forming galaxies that exhibit rapid size growth at z>4.
We study the rest-frame ultra-violet sizes of massive (~0.8 x 10^11 M_Sun) galaxies at 3.4<z<4.2, selected from the FourStar Galaxy Evolution Survey (ZFOURGE), by fitting single Sersic profiles to HST/WFC3/F160W images from the Cosmic Assembly Near-I nfrared Deep Extragalactic Legacy Survey (CANDELS). Massive quiescent galaxies are very compact, with a median circularized half-light radius r_e = 0.63 +/- 0.18 kpc. Removing 5/16 (31%) sources with signs of AGN activity does not change the result. Star-forming galaxies have r_e = 2.0 +/- 0.60 kpc, 3.2 +/- 1.3 x larger than quiescent galaxies. Quiescent galaxies at z~4 are on average 6.0 +- 0.17 x smaller than at z~0 and 1.9 +/- 0.7 x smaller than at z~2. Star-forming galaxies of the same stellar mass are 2.4 +/- 0.7 x smaller than at z~0. Overall, the size evolution at 0<z<4 is well described by a powerlaw, with r_e = 5.08 +/- 0.28 (1+z)^(-1.44+/-0.08) kpc for quiescent and r_e = 6.02 +/- 0.28 (1+z)^(-0.72+/-0.05) kpc for star-forming galaxies. Compact star-forming galaxies are rare in our sample: we find only 1/14 (7%) with r_e / (M / 10^11 M_Sun)^0.75 < 1.5, whereas 13/16 (81%) of the quiescent galaxies is compact. The number density of compact quiescent galaxies at z~4 is 1.8 +/- 0.8 x 10^-5 Mpc^-3 and increases rapidly, by >5 x, between 2<z<4. The paucity of compact star-forming galaxies at z~4 and their large rest-frame ultra-violet median sizes suggest that the formation phase of compact cores is very short and/or highly dust obscured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا